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ABSTRACT

This paper introduces a method for measuring odometry errors in mobile robots and for expressing these
errors quantitatively. When measuring odometry errors, one must distinguish between (1) systematic errors,
which are caused by kinematic imperfections of the mobile robot (for example, unequal wheel-diameters),
and (2)  non-systematic errors, which may be caused by wheel-slippage or irregularities of the floor.
Systematic errors are a property of the robot itself, and they stay almost constant over prolonged periods
of time, while non-systematic errors are a function of the properties of the floor.

Our method, called the University of Michigan Benchmark test (UMBmark), is especially designed to
uncover certain systematic errors that are likely to compensate for each other (and thus, remain undetected)
in less rigorous tests. This paper explains the rationale for the UMBmark procedure and explains the
procedure in detail. Experimental results from different mobile robots are also presented and discussed.
Furthermore, the paper proposes a method for measuring non-systematic errors, called extended UMBmark.
Although the measurement of non-systematic errors is less useful because it depends strongly on the floor
characteristics, one can use the extended UMBmark test for comparison of different robots under similar
conditions. 

Keywords: mobile robots, dead-reckoning, odometry, errors, error correction, systematic errors, UMBmark,
encoders
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1. INTRODUCTION

Odometry is the most widely used method for determining the momentary position of a mobile robot. In
most practical applications odometry provides easily accessible real-time positioning information in-between
periodic absolute position measurements. The frequency at which the (usually costly and/or time-consuming)
absolute measurements must be performed depends to a large degree on the accuracy of the odometry
system. It is therefore important for practical mobile robot applications to be aware of the actual odometric
accuracy of the platform, in order to space the absolute position updates optimally.

The well known disadvantage of odometry is that it is inaccurate with an unbounded accumulation of
errors. Typical odometry errors will become so large that the robot's internal position estimate is totally
wrong after as little as 10 m of travel [Caterpillar, 1991; Gourley and Trivedi, 1994]. For this reason, many
researchers develop algorithms that estimate the position uncertainty of a odometry robot (e.g., [Crowley
and Reignier, 1992; Tonouchi et al., 1994; Komoriyah and Oyama, 1994; Rencken [1994]). With this
approach each computed robot position is surrounded by a characteristic "error ellipse," which indicates a
region of uncertainty for the robot's actual position  [Tonouchi et al., 1994; Adams et al., 1994]. Typically,
these ellipses grow with travel distance, until an absolute position measurement reduces the growing
uncertainty and thereby "resets" the size of the error ellipse. These error estimation techniques must rely on
error estimation parameters derived from observations of the vehicle's odometry performance. Clearly, these
parameters can take into account only systematic errors, because the magnitude of non-systematic errors
is unpredictable.

This paper introduces a method for the quantitative measurement of systematic odometry errors. This
method, called the University of Michigan Benchmark test (UMBmark), prescribes a simple testing
procedure designed to quantitatively measure the odometric accuracy of a mobile robot with just an ordinary
tape measure. Section 2 presents a brief review of key-properties of typical odometry errors . Section 3
describes a commonly used but flawed calibration method, here called the "uni-directional square path."
Section 3 then discusses how these shortcoming can be overcome with the "bi-directional square path test,"
which is the basis of UMBmark. Also discussed in Section 3 is a method for measuring non-systematic
errors, although this method is of limited use for practical applications. Section 4 presents experimental
results for both methods.
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Figure 1 : A typical differential-drive mobile robot.

2. CHARACTERISTICS OF ODOMETRY ERRORS

In this paper we will focus on differential-drive vehicles like the LabMate platform manufactured by [TRC] (see Fig. 1). Other kinematic
arrangements, such as Ackerman steering (i.e., the typical configuration of almost all automobiles) or the synchro-drive (used in the
Cybermotion K2A and K3A platforms, as well as the Denning robots) may have different sources of errors. 

In the differential-drive design of Fig. 1 incremental encoders are mounted onto the two drive motors to count the wheel revolutions.
Using simple geometric equations, it is straight-forward to compute the momentary position of the vehicle relative to a known starting
position. This computation is called odometry. The basic odometry equations are given, for example,  in [Crowley and Reignier, 1992] and
in our companion paper included in these Proceedings, [Borenstein and Feng, 1995].

When investigating odometry errors, one should  realize that there are two substantially different categories: (1) systematic and (2) non-
systematic error sources. Below we list  all relevant sources of odometry errors according to these two categories. 

I. Systematic errors are caused by:

a. Unequal wheel diameters

b. Average of both wheel diameters differs from nominal diameter

c. Misalignment of wheels

d. Uncertainty about the effective wheelbase (due to non-point wheel contact with the floor)

e. Limited encoder resolution

f. Limited encoder sampling rate

II. Non-systematic errors are caused by:

a. Travel over uneven floors

b. Travel over unexpected objects on the floor

c. Wheel-slippage due to:

• slippery floors

• over-acceleration

• fast turning (skidding) 

• external forces (interaction with external bodies)

• internal forces (e.g., castor wheels)

• non-point wheel contact with the floor

Systematic errors are particularly grave because they accumulate
constantly. On most smooth indoor surfaces systematic errors contribute much more to odometry errors than non-systematic errors.
However, on rough surfaces with significant irregularities, non-systematic errors may be dominant. 

Systematic errors are usually caused by imperfections in the design and mechanical implementation of a mobile robot. In the course
of over 12 years of experimental work with  mobile robots we observed that in differential-drive robots, the two most notorious systematic
error sources are unequal wheel diameters and the uncertainty about the effective wheelbase. This opinion is reflected in the literature,
where these two error sources are named most often [Borenstein and Koren, 1985; Crowley, 1989; Komoriya and Oyama, 1994; Everett,
1995]. We will denote these errors E  and E , respectively.d  b

1) Unequal wheel diameters. Most mobile robots use rubber tires to improve traction. These tires are difficult to manufacture to exactly
the same diameter. Furthermore, rubber tires compress differently under asymmetric load distribution. Either one of these effects can
cause substantial odometry errors.

2) Uncertainty about the wheelbase. The wheelbase is defined as the distance between the contact points of the two drive wheels of
a differential-drive robot and the floor. The wheelbase must be known in order to compute the number of differential encoder pulses
that correspond to a certain amount of rotation of the vehicle. Uncertainty in the effective wheelbase is caused by the fact that rubber
tires contact the floor not in one point, but rather in a contact area. The resulting uncertainty about the effective wheelbase can be on
the order of 1% in some commercially available robots.

An additional potentially significant error is what we call the scaling error E . E  is the error caused by the average wheel-diameter Ds  s         avrg

differing from the nominal wheel-diameter D .  The effect of E  during straight line motion is quite clear: if, for example, D  is largernom      s           avrg

than D , then the robot will always travel further than programmed. Similarly, when turning on the spot, the robot will turn too much ifnom

D  is larger than D . Interestingly, we could not find reference to the scaling error E  in the literature — perhaps because this error isav rg    nom            s

so obvious. 
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Figure 2 : The effect of the two dominant
systematic odometry errors E  and E  . Noteb  d

how both errors may cancel each other out
when the test is performed in only one
direction.

Figure 3 : The unidirectional square path
experiment.
a. The nominal path.
b. Either one of the two significant errors E  or Eb  d

can cause the same final position error. 

However, even though E  can be a significant error, E  is exceedingly easy tos      s

measure with just an ordinary tape measure. For this reason we will assume that Es

has been measured and corrected in software before any of the procedures
described in this paper is performed. Once corrected in software, E  is not as

dominant error, because E  can be measured and corrected with an accuracy of 0.3-s

0.5% of full scale, even with an unsophisticated tape measure.

3. MEASUREMENT OF SYSTEMATIC ODOMETRY ER-
RORS

In this section we introduce methods for isolating and measuring odometry
errors. We discuss two test sequences (benchmark tests), which allow the
experimenter to draw conclusions about the systematic odometric accuracy of the
robot. A third variation, designed for non-systematic errors, is discussed at the end
of this section.

The first benchmark test is called the "uni-directional square path" test. This test,
or some variations of this test, have been mentioned in the literature [Cybermotion,
1988; Komoriya and Oyama, 1994], but we will show that this test is unsuitable for
differential drive vehicles. An "unsuitable" test in this context is a test that might
produce a "perfect" score, even though the robot has potentially huge odometry
errors. To overcome the shortcomings of the uni-directional square path test, we
introduce in Section 3.2 the "bi-directional square path test," called "UMBmark."

3.1 The Uni-directional Square Path as a benchmark?

Figure 2a shows a 4×4 m uni-directional square path. The robot starts out
at a position x , y , � , which is labeled START. The starting area should be0  0  0

located near the corner of two perpendicular walls. The walls serve as a fixed
reference before and after the run: measuring the distance between three specific
points on the robot and the walls allows accurate determination of the robot's
absolute position and orientation. 

The robot is programmed to traverse the four legs of the square path. The
path will return the vehicle to the starting area, but, because of odometry and
controller errors, not precisely to the starting  position. Since this test aims at
determining odometry errors and not controller errors, the vehicle does not need
to be programmed to return to its starting position precisely — returning
approximately to the starting area is sufficient. Upon completion of the square
path, the experimenter again measures the absolute position of the vehicle, using
the fixed walls as a reference. These absolute measurements are then compared
to the position and orientation of the vehicle as computed from odometry data.
The result is a set of return position errors caused by odometry and denoted �x,
�y, and ��.

 �x = x  - x  abs  calc

�y = y  - y  (1)abs  calc

�� = �  - �  abs  calc

where

 �x, �y,  �� — Position and orientation errors due to odometry.

 x , y , �  — Absolute position and orientation of the robot.abs  abs  abs

x , y , � — Position and orientation of the robot as computed fromcalc  calc  calc

odometry.

The path shown in Fig. 2a comprises of four straight line segments and four
pure rotations about the robot's center point, at the corners of the square. The
robot's end position shown in Fig. 2a visualizes the dead-reckoning error.
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Figure 4 : The effect of the two dominant systematic
odometry errors E  and E  : When the square path isb  d

performed in the opposite direction one may find that
the errors add up.

(2)

While analyzing the results of this experiment, the experimenter may draw two different conclusions: (1) The odometry error is the result
of unequal wheel diameters, E , as shown by the slightly curved trajectory in Fig. 2b (dotted line); or, (2) the odometry error is the resultd

of uncertainty about the wheelbase, E . In the example of  Fig. 2b, E  caused the robot to turn 87  instead of the desired 90  (dashedb         b
o     o

trajectory in Fig. 2b).

As one can see in Fig. 2b, either one of these two cases could yield approximately the same position error. The fact that two different
error-mechanisms might result in the same overall error may lead an experimenter toward a serious mistake: correcting only one of the two
error sources in software. This mistake is so serious because it will yield apparently "excellent" results, as shown in the example in Fig. 3.
In this example, we assume that the experimenter began "improving" performance by adjusting the wheelbase b in the control software. For
example, it is easy to see that the experimenter needs only to increase the value of b to make the robot turn more in each nominal  90  turn.o

In doing so, the experimenter will soon have adjusted b to the "ideal" value that will cause the robot to turn 93 , thereby effectivelyo

compensating for the 3  orientation error introduced by each slightly curved (but nominally straight) leg of the square path. o

We should note that another popular test path, the "figure-8" path [Tsumura et al., 1981; Borenstein and Koren, 1985, Cox 1991] can
be shown to have the same shortcomings as the uni-directional square path.

3.2 The bi-directional square path experiment: "UMBmark"

The detailed example of the preceding section illustrates that the uni-directional square path experiment is unsuitable for testing odometry
performance, because it can easily conceal two mutually compensating odometry errors. To overcome this problem, we introduce the Bi-
di rectional Square Path experiment, called University of Michigan Benchmark (UMBmark). UMBmark requires that the square path
experiment is performed in both clockwise and counter-clockwise direction. Figure 4 shows that the concealed dual-error from the example
in Fig. 3 becomes clearly visible when the square path is performed in the opposite direction. This is so because the two dominant
systematic errors, which may compensate for each other when run in only one direction, add up to each other and increase the overall error
when run in the opposite direction.

The result of the bi-directional square path experiment might look similar to the one shown in Fig. 5, which shows actual results with
an off-the-shelf LabMate robot carrying an evenly distributed load. In this experiment the robot was programmed to follow a 4×4 m square
path, starting at (0,0). The stopping positions for five runs each in clockwise (cw) and counter-clockwise (ccw) directions are shown in
Fig. 5. Note that Fig. 5 is an enlarged view of the target area. The results of Fig. 5 can be interpreted as follows:

a. The stopping positions after cw and ccw runs are clustered in two distinct
areas. 

b. The distribution within the cw and ccw clusters are the result of non-
systematic errors, as mentioned in Section 2.2. However, Fig. 5 shows that
in an uncalibrated vehicle, traveling over a reasonably smooth concrete
floor, the contribution of systematic errors to the total odometry error is
notably larger than the contribution of non-systematic errors. 

After conducting the UMBmark experiment, one may wish to derive a
single numeric value that expresses the odometric accuracy (with respect to
systematic errors) of the tested vehicle. In order to minimize the effect of non-
systematic errors, we suggest to consider the center of gravity of each cluster
as representative for the odometry errors in cw and ccw directions. 

The coordinates of the two centers of gravity are computed from the
results of Eq. (1) as

 where n = 5 is the number of runs in each direction.

The absolute offsets of the two centers of gravity from the origin are
denoted r  and r  (see Fig. 5) and are given byc.g., cw  c.g., ccw
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(3)

Figure 5 : Typical results from running UMBmark (a square
path run in both cw and ccw directions) with an uncalibrated
vehicle.

Finally, we define the larger value among r  and r  as the measure of odometric accuracy for systematic errors c.g., cw  c.g., ccw

E  = max(r  ; r ) (4)max,syst  c.g.,cw  c.g.,ccw

The reason for not using the average of the two centers of gravity r  and r  is that for practical applications, one needs to worryc.g.,cw  c.g.,ccw

about the largest possible odometry error. Note that the final orientation error �� is not considered explicitly in the expression for E .max,syst

This is so because all systematic orientation errors are implied by the final position errors, as has been shown in [Borenstein and Feng,
1995].

3.3 Measuring Non-Systematic Errors

Some limited information about a vehicle’s susceptibility to non-systematic errors can be derived from the spread of the return position
errors that was shown in Fig. 5, above. When running the UMBmark procedure on smooth floors (e.g., a concrete floor without noticeable
bumps or cracks), an indication of the magnitude of the non-systematic errors can be obtained from computing the estimated standard
deviation, ). We will specify ) in Section 4 (Experimental Results), but only with the disclaimer that all runs were performed on the same
floor, which was fairly smooth and guaranteed free of large irregularities. 

We caution that there is only limited value to knowing ), since ) reflects only on the interaction between the vehicle and a certain floor.
Furthermore, it can be shown that from comparing the ) from two different robots (even if they traveled on the same floor), one cannot
necessarily conclude that the robots with the larger ) showed higher susceptibility to non-systematic errors.  In real applications it is
imperative that the largest possible disturbance be determined and used in testing. For example, the ) of the test in Fig. 5 gives no
indication at all as to what error one should expect if one wheel of the robot inadvertently traversed a large bump or crack in the floor.  

For the above reasons it is difficult (perhaps impossible) to design a generally applicable quantitative test procedure for non-systematic

errors. However, we would like to propose an easily reproducible test that would allow to compare the susceptibility to non-systematic
errors between different vehicles.  This test, here called the extended
UMBmark, uses the same bi-directional square path as UMBmark,
but, in addition, introduces artificial bumps. Artificial bumps are
introduced by means of a common, round, electrical household-type
cable (such as the ones used with 15 Amp. 6-outlet power strips).
Such a cable has a diameter of about 9-10 mm. It’s rounded shape
and plastic coating allow even smaller robots to traverse it without too
much physical impact. In the proposed  extended UMBmark test the
cable is placed 10 times under one of the robot’s wheels, during
motion. In order to provide better repeatability for this test, and to
avoid mutually compensating errors, we suggest that these 10 bumps
be introduced as evenly as possible. The bumps should also be
introduced during the first straight segment of the square path, and
always under the wheel that faces the inside of the square. It can be
shown [Borenstein, 1995a] that the most noticeable effect of each
bump is a fixed orientation error in the direction of the wheel that
encountered the bump. In the TRC LabMate, for example, the
orientation error resulting from a bump of height  h= 10 mm is roughly
�� = 0.6  [Borenstein, 1995a].  o

Next, we need to discuss which measurable parameter would be
the most useful one for expressing the vehicle’s susceptibility to non-
systematic errors. Consider, for example, Path A and Path B in Fig.
6. If the 10 bumps required by the extended UMBmark test were
concentrated at the beginning of the first straight leg (as shown in
exaggeration in Path A), then the return position error would be very
small. Conversely, if the 10 bumps were concentrated toward the end
of the first straight leg (Path B in Fig. 6), then the return position
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(5)

(6)

Figure 6:  The return position of the extended
UMBmark test is sensitive to the exact location where
the 10 bumps were placed. The return orientation is
not.

error would be larger. Because of this sensitivity of the return position errors to the exact location of the bumps it is not a good idea to
use  the return position error as an indicator for a robot’s susceptibility to non-systematic errors. Instead, we suggest to use the return
orientation error, ��. Although it is more difficult to measure small angles, we found measurement of �� to be a more consistent
quantitative indicator for comparing the performance of different robots. Thus, we measure and express the susceptibility of a vehicle to
non-systematic errors in terms of the its average absolute orientation error defined as

where n = 5 is the number of experiments in cw or ccw direction, superscripts “sys” and “nonsys” indicate a result from either the regular
UMBmark test (for systematic errors) or from the extended UMBmark test (for non-systematic errors). Note that Eq. (5) improves on the
accuracy in identifying non-systematic errors by removing the systematic bias of the vehicle, given by

Note that the arguments inside the Sigmas in Eq. (5) are absolute values
of the bias-free return orientation errors. This is so because we want to avoid
the case in which two return orientation errors of opposite sign cancel each
other out. For example, if in one run �� = 1  and in the next run  �� = -1 ,o         o

then we should not conclude that  . 

Using the average absolute return error as computed in Eq. (5) would

correctly compute   . By contrast, in Eq. (6) the actual

arithmetic average is computed, because we want to identify a fixed bias.

3.4 Summary of the UMBmark Procedure

In summary, the UMBmark procedure is defined as follows:

1. At the beginning of the run, measure the absolute position (and, option-
ally, orientation) of the vehicle and initialize to that position the starting
point of the vehicle's odometry program.

2. Run the vehicle through a 4×4 m square path in cw direction, making sure to

� stop after each 4 m straight leg;
� make a total of four 90 -turns on the spot;o

� run the vehicle slowly to avoid slippage.

3. Upon return to the starting area, measure the absolute position (and, optionally, orientation) of the vehicle.

4. Compare the absolute position to the robot's calculated position, based on odometry and using Eqs. (1).

5. Repeat steps 1-4 for four more times (i.e., a total of five runs).

6. Repeat steps 1-5 in ccw direction.

7. Use Eqs. (2)  and (3) to express the experimental results quantitatively as the measure of odometric accuracy for systematic errors,
E . max,syst

8. Optionally, use a plot similar to Fig. 5 to represent �x  and �y  graphically.i  i

9. If an estimate for the vehicle’s susceptibility to non-systematic errors is needed, then perform steps 1-6 again, this time placing a round
10 mm diameter object (for example, an electrical household cable) under the inside wheel of the robot. The object must be placed there
10 times, during the first leg of the square path. 

10. Compute the average absolute orientation error,   according to Eqs. (5) and (6). 
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Name of vehicle
or  configuration

Tested Platform Result in [mm]

Platform Name Modification Calibration E  max,syst )

1. TRC-
nomod/nocal

TRC LabMate none none
(b=340.0, D /D =1)R L

310 50

2. TRC-
3loop/nocal

TRC LabMate 3 loops of masking tape
on right wheel

none
(b=340.0, D /D =1)R L

423 31

3. TRC-
nomod/docal

TRC LabMate none yes 
(b=337.2,
D /D =1.00121)R L

26 32

4. TRC
3loop/docal

TRC LabMate 3 loops of masking tape
on right wheel

yes
(b=337.1,
D /D =1.00203)R L

20 49

5. CLAPPER University of
Michigan
CLAPPER

4-DOF vehicle, made
from 2 TRCs
with compliant link

yes
22 11

6.Cybermotion Cybermotion
K2A

Slightly worn-out, in
service since 1987

Original, from 
manufacturer

63 60

Table I:  Summary of properties and UMBmark results for the six different vehicles tested

Figure 7:  One of the four TRC LabMates at the
University of Michigan. The system shown here is
equipped with 8 ultrasonic sensors that were not used
in the UMBmark experiment. 

4. EXPERIMENTAL RESULTS

In this section we present experimental results from testing three different mobile robot platforms with the UMBmark procedure. The
platforms were the TRC LabMate, the Cybermotion K2A, and  a unique 4-degree-of-freedom (4-DOF) platform developed at the University
of Michigan, called CLAPPER [Borenstein, 1994, 1995a, 1995b]. The TRC platform  was modified in four different ways, resulting in four
different odometry characteristics. We will treat these four different characteristics as though they were different vehicles. Table I below
summarizes the properties of the six different vehicles that were tested, and the following sections discuss each vehicle and result in detail.

4.1 TRC-nomod/nocal

This configuration represents  the basic TRC LabMate, without kinematic modifications and without any special calibration (i.e., using
the nominal wheelbase b=340 mm and a wheel diameter ration of D /D  = 1.000). The LabMate shown in Fig. 7 is equipped with ultrasonicR L

sensors that were not used in this experiment. An onboard 486/50 MHZ PC compatible single board computer controls the LabMate. On
our LabMate platforms we bypass TRC's original onboard control computer completely. This is done by means of a set of two HCTL
1100 [Hewlett Packard] motion control chips that connect our 486 computer directly to the motors' PWM amplifiers. Generally we do this
in order to achieve a very fast control loop, one that is not impeded by the relatively slow serial interface required by the original onboard
computer. In the particular case of the UMBmark experiments described here, the bypass assures that the measurements are not affected
by the manufacturer's odometry method and, possibly, software-embedded calibration factors. However, we emphasize that our bypass
of the original onboard computer is in no way necessary for performing the UMBmark procedure.

In the 4×4 m square path experiments, the robot traveled at 0.2 m/s
during the four 4 m straight legs of the path and stopped before turning.
During the four on-the-spot turns the robot's wheels had a maximum linear
speed of ±0.2 m/s. Figure 10a shows the return position errors (defined in
Section 3.1.) for the unmodified/ uncalibrated TRC LabMate. In this test
E  = 310 mm and ) = 50 mm.max,sys

4.2 TRC-3loop/nocal

In this configuration we modified the kinematic characteristics of the
original LabMate by winding three loops of masking tape around the right
wheel. The tape increased the diameter of the wheel and may or may not
have changed the effective wheelbase of the vehicle. Figure 10b shows the
return position errors for the TRC-3loop/nocal configuration. In this test
E  =  423 mm and ) = 31 mm.max,sys
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Figure 8:  The CLAPPER is a unique 4-DOF mobile robot
developed at the University of Michigan. The CLAPPER can
measure and correct non-systematic odometry errors during
motion.

Figure 9:  CARMEL, the University of Michigan's
oldest mobile robot, has been in service since
1987. 

4.3 TRC-nomod/docal

In this configuration the LabMate's two main odometry parameters (i.e., the wheel-diameter ratio, and the effective wheelbase) had been
calibrated before the run. As we mentioned above, such calibration is often performed in a trial-and-error fashion, in an attempt to improve
overall odometry performance. In our case here, we used the calibration technique described in our companion paper included in these
Proceedings [Borenstein and Feng, 1995]. The correction factors used for calibration were b=337.2 mm (instead of the nominal b  = 340nom

mm) and D /D =1.00121. Note that a vehicle with properly implemented calibration factors acts (with respect to odometry) like a totallyR L

different vehicle. The results of the UMBmark test with this configuration are shown in Fig. 10c. In this test E  =  26 mm andmax,sys

) = 32 mm.

4.4 TRC-3loop/docal

In this configuration we used the same modification as in Section 4.2 above: 3 loops of masking tape wound onto the right wheel.
However, this time the vehicle was calibrated, using the procedure described in [Borenstein and Feng, 1995]. The correction factors used
for calibration were b=337.1 mm (instead of the nominal 340 mm) and
D /D =1.00203.  The results of the UMBmark test with this configura-R L

tion are shown in Fig. 10d. In this test E  = 20 mm and ) = 49 mm.max,sys

4.5 CLAPPER

The Compliant Linkage Autonomous Platform with Position
Error Recovery (CLAPPER) is a 4-Degree-of-Freedom (4DOF)
vehicle developed and built at the University of Michigan (see Fig. 8).
The CLAPPER comprises two off-the-shelf TRC LabMates (here
called "trucks") connected by a so-called compliant linkage. The
vehicle is instrumented with two rotary absolute encoders that measure
the rotation of the trucks relative to the compliant linkage. And a linear
encoder measures the relative distance between the centerpoints of the
two trucks. The CLAPPER has the unique ability to measure and
correct non-systematic odometry errors during motion. The system
also corrects the systematic odometry errors discussed in this paper
(i.e., unequal wheel-diameters and uncertainty about the effective
wheelbase). However, the CLAPPER also introduces some new
systematic errors related to its unique configuration [Borenstein, 1994;
1995a, 1995b]. These new systematic errors were reduced by extensive
trial-and-error calibration before running the UMBmark test. Figure 10e
shows the results of the UMBmark test with the CLAPPER.  In this
test E  = 22 mm and ) = 11 mm . Note that ) = 11 mm ismax ,sys

substantially lower than the results for the other vehicles. This fact
demonstrates the successful correction of non-systematic errors. 

We should note that the test path for the CLAPPER was of rectangular
shape with 7×4 m dimensions. The vehicle also made some additional maneuvers
in order to approach the stopping position properly (see [Borenstein, 1995] for
details). The CLAPPER's average speed was 0.45 m/s and the vehicle did not
come to a complete halt before turns. These deviations from the UMBmark
specifications are of little impact for a well calibrated system, and they did
probably not improve the CLAPPER's UMBmark performance.

4.6 Cybermotion

The Cybermotion K2A platform is a very smart implementation of the
synchro-drive (see [Everett, 1995] for a more detailed discussion on synchro-
drives). We believe that the implementation of the synchro-drive on the
Cybermotion K2A provides the inherently best odometry performance among
all commonly used mobile robot drive kinematics. This is especially true with
regard to non-systematic errors. For example, if the K2A encounters a bump on
the ground, then the wheel in contact with the bump would have to turn slightly
more than the other two wheels. However, since all the wheels are powered by
the same  motor and have the same speed, the wheel on the bump will slip (at
least, this is more likely than to assume that both other wheels on the ground will
slip). Thus, if slippage occurs in the wheel that is "off," then the odometry
information from the "correct" wheels remains valid, and only a small error (if at
all) is incurred. 

The Cybermotion K2A platform shown in Fig. 9 is called CARMEL.
CARMEL was the first robot to be placed into service at the University of
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Figure 10:  A plot of the return position errors shows the results of the UMBmark test applied to six different
vehicles/configurations.  The test comprised five runs each in cw and ccw  direction on a 4×4 m square path.

Michigan's Mobile Robotics Lab when the lab was created in 1987. Since then, CARMEL has had many collisions, was disassembled
several times, and has survived generally rough treatment. For these reasons, one should regard CARMEL's UMBmark performance, shown
in Fig. 10f, with caution. In our test, we found E  = 63 mm and ) = 60 mm. Although we have not studied in depth the kinematics ofmax,sys

the K2A with regard to systematic errors, we believe that it is susceptible to  some of the same systematic errors as differential-drive mobile
robots. This is evident from the clearly defined separate clusters for the cw and ccw runs in Fig. 10f. CARMEL traveled at 0.2 m/s during
the four 4 m straight legs of the path and stoped before turning.

4.7 Measurement of Non-Systematic Errors
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Return Orientation Errors [ ]o

TRC
LabMate

Cyber-
motion 

U of M
CLAPPER

0.28 3.77 -0.2

-2.03 0.97 -0.14

cw 1 7.10 7.78 0.10

cw 2 6.40 4.17 0.10

cw 3 5.60 1.72 0.10

cw 4 6.60 4.23 -0.70

cw 5 5.90 3.55 0.20

ccw 1 -7.50 -11.35 -0.60

ccw 2 -8.80 -2.48 -0.40

ccw 3 -6.60 -4.61 -0.50

ccw 4 -8.80 -6.34 0.10

ccw 5 -8.70 -2.31 0.20

8.35 3.91 0.35

Table II:  Experimental results of non-systematic error measurements
with the extended UMBmark test.

In this section we present results of measurements of non-
systematic errors using the extended UMBmark test (explained in
Section 3.3). Table II lists the results for the three robots that
were tested. As explained in Section 3.3, ten 10-mm bumps were
introduced during the first leg of each run. The resulting return

orientation errors   (5 each in cw and ccw direction)

are shown in Table II. The average return orientation error

 was computed according to Eq. (5). Note that this

computation requires the average of the systematic return

orientation errors,  and  , in order to remove

the systematic bias from the result of the non-systematic error
tests, as shown in Eq. (5). The  results in Table II show that the
Cybermotion with its inherently resilient synchro-drive is only half
as sensitive to non-systematic errors than the LabMate. However,
the CLAPPER with active error correction is one order of
magnitude less sensitive than the Cybermotion.

5. CONCLUSIONS

This paper proposes a benchmark test for the quantitative
measurement of odometry errors in mobile robot. This test, called
UMBmark, assures that different dead-reckoning errors don't
compensate for each other, as may be the case with other
odometry tests. The UMBmark procedure yields a single numeric
value, E , that represents a quantitative measure of a vehicle'smax,sys

systematic odometry errors. This makes the UMBmark test an
effective tool for evaluating or tuning different odometry parame-
ters of a vehicle, and for the comparison of odometry perfor-
mance between different mobile robots. 

Six different vehicles (or vehicle configurations) were tested
with the UMBmark test and the results were discussed. The
UMBmark test clearly shows how well each vehicle performed with respect to odometry. Results of the UMBmark test are meaningful
— whether presented as a graph of return position errors or as a single numeric quantity, E . The standard deviation ) of eachmax,sys

of the two sets (cw and ccw) of raw-data collected from the UMBmark test can be used as a rough indicator for a vehicle's
susceptibility to non-systematic odometry errors. However, because of the nature of non-systematic errors one should not use ) as
an estimate for non-systematic errors, except when relatively smooth floors without major irregularities can be assumed. 

An additional test, called the extended UMBmark test, was also discussed in this paper. The extended UMBmark test is designed
to measure a vehicle’s susceptibility to non-systematic errors. This test is of limited utility, because non-systematic errors depend to
a large degree on floor characteristics.  However, the extended UMBmark test can be used to compare the performance of different
vehicles under the same test conditions.
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