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Abstract

Grid-type representations for sensor based map-building are becoming
increasingly popular in mobile robot applications. Grid-type maps are
advantageous because they are computationally easy to maintain, allow for
integration of data from different sensors, and can be used to statistically
express the confidence in the correctness of the data.

This paper introduces an index of performance (IOP), designed to
quantitatively express the match between a sensor-built map and a precisely
measured reference map. The IOP computes a single value representing the
correlation between the sensed object positions in the grid and the actual
object positions. With the IOP it is easy 1o compare the accuracy of
different map building methods, as well as the effect of different parameters
within a certain method.

Two grid-lype map-building algorithms were compared by means of the
propesed IOP. One algorithm takes panoramic "snapshots” while the mobile
robot is standing, and then uses a probabilistic distribution to update the
grid, The other algorithm, called Histogramic In-Motion Mapping (HIMM),
is based on rapid sampling of the sensors during motion.

1. Introduction

Mobile robotics research faces the task of building accurate
environmental maps from information produced by cnboard
sensors. Ultrasonic sensors are usually used for this task [1],
[2], [3], {71, [8], 19], (101, [12], [13], [15] sometimes in
combination with infrared sensors [11] or laser range finders
[16]. Ultrasonic sensors are widely available, inexpensive, and
easy to control. However, sonar range measurements suffer
from fundamental drawbacks that limit their straightforward
utilization in mapping applications [2]. The foremost problems
are: a} Poor directionality; b) frequent misreadings; and c)
specular reflections.

In order to produce useful maps from ultrasonic data, the map-
building algorithm must compensate for these shortcomings.
Based on the form of dara representation, two approaches can be
distinguished. a) line-type world models [2], [10], [18); and b)
grid-type world models (GTWMSs) [11, [3], [5], [6], [14], [15].
We have extensively experimented with both types of world
models and found that GTWMSs are more suitable to cope with
the problems of ultrasonic sensors; mostly because they allow
for a statistical expression of confidence in the correctness of the
data.

To improve the quality of map-building, a tool is needed to
compare map-building results produced by different methods or
different sets of parameters. This paper introduces an index of
performance (I0P) designed to quanttatively express the match
between a sensor-built map and a precisely measured reference
map. The proposed IOP is insensitive to grid cell size and
therefore allows comparison of algorithms developed with
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different grid formats. To demonstrate the versatility of the [OP,
we present results from application of the IOP to two different
map-building methods.

The proposed IOP is described in Section 3, and experimental
results and comparisons are given in Section 4.

2. Map Building Methods
2.1 Heuristic Probability Function Mapping

A powerful probabilistic GTWM has been developed at Camegie
Mellon University (CMU) {14],[15]. In this GTWM, the robot
work area is represented by a two-dimensional array (certainty
grid) of square elements (cells). Each cell contains a certainty
value (CV) that indicates the measure of confidence that an
obstacle exists within the cell area. CVs are updated by a
heuristic probability function (HPF) that takes into account the
characteristics of a given sensor. For example, ultrasonic
sensors have a conical field of view. A typical ultrasonic sensor
[17] rerurns a radial measure of the distance to the nearest object
within the cone, yet does not specify the angular location of the
object. Thus, a distance measurement d results from an object
located anywhere within the area A (see Fig. 1). However, an
object located near the acoustic axis (the center of the cone) is
more likely to produce an echo than an object further away from
the acoustic axis [2].
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Fig 1.

a) Only a single cell is incremented for each range reading,

b) Histogramic probability distribution obtained by continuous and rapid
sampling while the vehicle is moving.



With CMU's certainty grid method, the mobile robot remains
stationary while taking a panoramic scan with its ring of 24
ultrasonic sensors. Next, the certainty grid is updated with a
probabilistic function Cx that is applied to each one of the 24
range readings. Finally, the robot moves to a new location,
stops, and the procedure repeats. After the robot traverses a
room in this manner, the resulting certainty grid represents a
fairly accurate map of the room.

Additional information can be derived from a range reading
concerning the sector between S and A (see Fig. 1). If an echo
is received from an object at distance d, then this sector is likely
10 be free of objects. In [14] this is expressed by applying a
probability function with negative values to the cells in the empty
area.

The HPF method uses the following distribution functions [14]:

Given the following definitions:

R - the range measurement returned by the sonar sensor,
g - the mean sonar deviation error,

w - the beam aperture (angle of cone in Fig. 1a),

&

- the distance between a given cell in the cone and the
sensor,

0 - the angle between the acoustic axis of the beam and
the axis from the sensor to a given cell in the cone,

The probability that a cell within the sonar cone is empty is given
by:

P E(x,y,z) = pl position(x,y,z) is empty] $8)
pxy,z} = Ep(8 )Ea( 6)
where:

E?‘(S):l"((ﬁ = Rmin)/(R -€ _Rmin))z for SE ERmin' R- E']

E/(8)=0 otherwise. 2)
And:
E4(8) = 1-(26/0)? for 8 € [-00/2,0/2] 3)

The probability that a certain cell within the sonar area is
occupied is given by:

po(x,y,Z) = p[ position(x,y,z) is occupied] @)
poxy.z) = CH(3)04(0)

where:
Op(8)=1-((B-R) /e )2 for Se[R - &, R +¢] 5)
Ox(8)=0  otherwise.

Ands
04(0) = 1-(20/w)? for © [-w/2,0/2] 6)

Both occupied cells and empty cells in the certainty grid are
updated using probability addition formulas. After a run has
been completed, these two types of cells are combined into a

final sensor grid. The combination is a thresholding procedure
as follows:

Sensor Grid[X,Y] =

Oce(X,Y)  if Occ(X.)Y) 2 Emp(X,Y) 42
or

-EmpX.Y) if OceX,Y) < Emp(X,Y) (8)

The resulting HPF sensor grid contains probabilities ranging
from -1 to 1. Values of zero on the HPF grid indicate that no
sensor information was obtained for these cells.

2.2 Histogramic In-Motion Mapping

A new method for teal-time map building with a mobile robot in
motion was recently developed at the University of Michigan
[4]. This method, entitled Histogramic In-Motion Mapping
(HIMM]} uses a two-dimensional Cartesian histogram grid for
obstacle representation. This representation has been derived
from the certainty grid concept described in Section 2.1. Like
the certainty grid, each cell in the histogram grid holds a
certainty value (CV) that represents the confidence of the
algorithm in the existence of an obstacle at that location. The
histogram grid differs from the certainty grid in the way it is
built and updated. CMU's method projects a probability profile
onto alf those cells affecied by a range reading. This procedure
is computationally intensive and would impose a heavy time-
penalty for real-time execution by a controlling computer. The
HIMM method, on the other hand, increments only one cell in
the grid for each range reading. For ultrasonic sensors, this cell
corresponds to the measured distance 4 and lies on the acoustic
axis of the sensor (cell C¢ in Fig 1a). While this approach may
seem to be an oversimplification, a probabilistic distribution is
actually obtained by continucusly and rapidly sampling each
sensor while the vehicle is moving. The result is a histogramic
probability distribution in which high certainty values are
obtained in cells close to the actual location of the obstacle (Fig
1b).

The HIMM method also uses the information gained from a
sensor reading to update cells in the "empty sector” (between §
and A of Fig. 1a), as does CMU's certainty grid method.
However, instead of indicating the absence of objects in this
region by computing and projecting a negative probability
function for all cells in the sector, the fast sampling approach is
used and only those cells that are located on the acoustic axis are
decremented.

A final note concerns the actual implementation of HIMM:
Whenever a cell is incremented, the increment (denoted I*) is
actually 3 (not t, as may be expected) and the maximum CV of a
cell is limited to CVpax = 15. Decrements {denoted I},
however, take place in steps of -1 and the minimum value is
CV pin = 0. Increments are larger than decrements because only
one cell is incremented for each reading, whereas multiple cells
are decremented (i.e., all cells between C, and C,, in Fig. 1a).

3. The Index of Performance

The proposed irndex of performance (IOP) computes a
correlation between the sensed position of objects, as computed
by the map-building algorithm, and the actual position of the
objects, as measured manually.

To enter the actual object positions into the computer, the
absolute coordinates of the corners comprising each object are
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measured. The lines connecting these coordinates are computed
and projected onto a blank grid. In the resulting actual position
grid (APQG), cells are either '1' {filled), if they correspond to the
edge of an obstacle, or ‘(Y (empty), if they are inside or outside
of an obstacle. Fig. 2 shows typical APGs. Since the
resolution of an individual grid cell is on the order of a few
centimeters (we use square cells of 10cm sidelength) the
reference measurement can be made with an ordinary tape
measure.

Im} m)
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Fig 2. Test obstacle environments.

After this preparation, the robot is run through the obstacle
course and a sensor grid map is built from sensor data. For each
filled cell (i,j) in the sensor grid, the distance to the nearest filled
cell in the APG is computed. We denote this distance D{,j)}yin-
Summing D{,j)min for all filled cells yields a measure of overall
accuracy of the system. This method can be refined by
weighting each D(1,j)pmin with its associated certainty value
(CV). This is desirable since the CV of a cell is directly related
to the count of recurring range readings for the same cell. The
IOP can be normalized by dividing the weighted sum of
minimum distances by the sum of all CVs. This way, the IOP is
independent of the range of CVs of the particular method. The
IOP is thus:

Z(Dm(i,j) * Vi)

I= 9)
Zovy,
%))
where:
Dupin(ij) - Distance from sensor grid cell (i,j} to the
nearest filled cell in the actual position grid
(APG).
Cvy ) - Certainty value of cell (i,j) in the sensor grid.
I - Index of Performance.

Statistically, our proposed IOP is analogous to a mean standard
deviation calculation. The same type of computation using the
more popular statistical variance measure would use a squared
distance term (D(i,j)i,)2 . We have chosen to use the
unsquared distance term in order to reduce the algorithm's
sensitivity to false readings (uncorrelated readings due to noise
and crosstalk) that show at random locations in the grid. Also,
the IOP based on unsquared terms has the intuitive physical
meaning of the average of all D(i,j)min.
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4, Experimental Results

4,1 Test System Configuration

Qur experiments were conducted on a Cybermation K2A robot
(CYBERMATION) firted with a ring of 24 ultrasonic sensors.
Sensor information was evaluated on a 20 MHz IBM-AT
compatible 80386 computer.

Two different map building methods were chosen to
demonstrate the versatility of the Index of Performance: our
Histogramic In-Motion Mapping algorithm (HIMM), and a
heuristic probability function (HPF), similar to the one
developed at CMU [14], The two algorithms (HIMM and HPF)
differ in two ways (as explained in Section 2): a) the method of
gathering the darta, and b) the method of updating the grid.

Both map-building systems were evaluated within the obstacle
set-ups shown in Fig. 2. The objects in Fig. 2a are cardboard
boxes, Styrofoam partitions, and a 3/4 inch diameter cardboard
pele; the single object in Fig. 2b is a box. The locaton of these
objects was measured from a random starting position S. At the
beginning of each run, the robot was accurately positicned at S.

4.2 Test Results

We first tested the HIMM method. Since this method is an
integral part of our obstacle avoidance algorithm [4], only the
target position needed to be specified for a run. The algorithm
autonomously steers the robot among the obstacles on a smooth,
continuous path (shown in grid resclution in Fig. 3 ). This
procedure was performed ten times for each of the two obstacle
courses in Fig. 2, and IOP measurements were recorded for
each run.

Pah of Robot with
Siagle Qbsiacle

Paih of Roboz with
Muluiple Obstacles

Targer Aol Tocgat

Box

¢

| Rabor pah
o i Rebot Path
R be

Siarg Siart

Farditan

fomrt.
==t F—t
. . H

M.
15

=

Fig 3. Paths of robot under control of the HIMM algorithm among
multiple and single obstacle environments in grid resolution,

Next, the HPF algorithm was applied to the sensor readings
taken by the robot at different locations. To produce similar
conditions for this test, the locations were chosen along the
continuous path defined by the HIMM run.

Again ten runs per obstacle environment (Fig 2a, b} were made,
each one with 4 well-spaced locations on the path. Fig. 4 shows
an example of a resulting map along with the robot positions
from which the sensor data were taken. Results of all runs are
summarized in Table 1,



Table 1.
Multiple Cbstacles Single Obstacle
Algorithm —_
0P $ 10P ]
HIMM 86.95 16.14 85.14 17.52
HPF 224.164 2595 216.37 38.99

Summary of the Index of Performance statistic for runs using two different grid
building algorithms. Ten runs were compiled for each algorithm. Statistics
shown are the mean IOP (IOF) and the standard deviations (s).

4.3 Discussion

The results demonstrate some of the important characteristics of
the IOP. The mean IOP (IOP) stays consistent regardless of
obstacle environment. (86.95 and 85.14 for the HIMM and
224.16 and 216.37 for the HPF). This allows for comparison
of algorithms originating from different labs using different
obstacles and configurations.

The TOP also gives a quantitative measure of the differences in
the sensor grid maps produced by each algorithm type. This
difference can be visually identified in Fig. 4. Fig. 4a shows the
result of a HPF run whereas Fig. 4b shows the result of a
HIMM run.
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a

Fig. 4

The small black rectangles (blobs) represent filled sensor grid
cells. Empty cells are not indicated. Each cell represents a real-
world square of size 10cm *10cm. On the computer screen,
CVs are coded with a different celor for each one of the 16
possible CVs (ranging from 0 to 15). This effect cannot be
reproduced in the screen-dumps of Fig. 4, but classes of low,
medium, and high CVs can be distinguished by different blob
sizes, as described in Fig. 4.

Both algorithms result in a fairly good representation of the
obstacles (superimposed as solid lines in Fig. 4). The HPF has
characteristic "arcs” corresponding to the distribution of values
over all cells of the sensor cone at distance d (area A in Fig. 1a).
This is especially evident in the representation of the pole
(Fig. 4a). In general, there is a greater dispersion of sensor
points about the obstacles as compared with the HIMM
algorithm (Fig. 4b). This dispersion is measured by the IOP.
The computed IOP value of 220 for the HPF means that the
average distance from any of the sensor grid entries to the
obstacles is about 220mm or about 2 grid cells (10cm by 10cm
each in our case). The minimal dispersion of sensor entries for
the HIMM method { Fig. 4b ) results in an average of under 1
grid cell (86mm).
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a) Sensor grid result using the heuristic probability function (HPF) algorithm,
) Sensor grid result using the Histogramic In-Motion Mapping (HIMM) algorithm.
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5. Conclusion

The proposed IOP was used to analyze the quality of two
different map building methods. The HIMM method resulted in
a sensor grid with entries in close proximity to actual object
locations. This resulted in a favorable (low) IOP value. In
contrast, the grid update rules and probability distribution
functions used in the HPF method produced a sensor grid with a
larger number of sensor grid entries further from actual object
locations. Although these were often of low certainty value
(CV), they resulted in a larger index of performance (IOP) value
indicating a less precise representation of the actnal environment.

The I0OP can be used to analyze different methods of grid type
map building. The simple quantitative representation of the IOP
allows the investigator to comprehend the quality of the maps
casily since the value is expressed in measurement units.

The IOP tool is used in the authors’ Iab to measure various map
building and sensor grid enhancement routines as well as the
effect of parameter modifications within these routines. The
straightforward visualization of the IOP gives reascn to expect
that this measure will serve a versatile role in future map
building research.
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