
The GuideCane
-

A Computerized Travel Aid
 for the Active Guidance

 of Blind Pedestrians

by

Iwan Ulrich

A dissertation submitted in partial fulfillment of the
requirements for the degree of Master of Science

Thesis Committee

Dr. Johann Borenstein (Advisor)
Prof. Daniel Koditschek

The University of Michigan
College of Engineering

Department of Mechanical Engineering and Applied Mechanics
Ann Arbor, August 1997

Research was sponsored by the Whitaker Foundation

II

To my parents, Hedy and Emil

III

ACKNOWLEDGMENTS

I would like to take this opportunity and express my gratitude to Dr. Johann
Borenstein who gave me the possibility to work on the GuideCane project for the last two
years.

Special thanks to Joey Jean and Ivy Zhou for helping build the GuideCane. Also
thanks to Patrick Kenny, Chris Minekime, Brian Costanza, Brad Hold and Jim Berry for
their help and discussions.

And most important, thanks to Catherine Cartier for all her support and for
encouraging me to continue my studies on a different continent.

IV

LIST OF FIGURES

Figure 1: The GuideCane 2
Figure 2: An obstacle avoidance maneuver 3
Figure 3: GuideCane interior 8
Figure 4: Current wheelbase 9
Figure 5: New proposed wheel-base structure 11
Figure 6: Brake: a) front view, b) side view 11
Figure 7: Sonar placement 12
Figure 8: The GuideCane prototype block diagram 13
Figure 9: The final GuideCane block diagram 15
Figure 10: Interface schematic 16
Figure 11: The MC68HC11A8 block diagram 18
Figure 12: The main HC11 19
Figure 13: The HC11 slave 20
Figure 14: Write command 22
Figure 15: Read command 23
Figure 16: SPI architecture 24
Figure 17: FIFO bus control for: a) slave 1, b) slave 2 26
Figure 18: Timing of quadrature decoder reading 27
Figure 19: LCD switches 29
Figure 20: Voltage regulator system 34
Figure 21: Single battery voltage curve 37
Figure 22: EERUF example 39
Figure 23: Conventional system without crosstalk 40
Figure 24: Conventional system with crosstalk 40
Figure 25: EERUF system with crosstalk 41
Figure 26: Servo interior 43
Figure 27: Servo input: a) without velocity limit, b) with velocity limit 45
Figure 28: Variable main servo speed limit 45
Figure 29: Servo input signal (PWM) 48
Figure 30: Generation of PWM signals: a) regular method, b) better method 49
Figure 31: Reference system 58
Figure 32: Virtual scrolling borders 60
Figure 33: VFH Example: a) obstacle course, b) histogram grid 64
Figure 34: Polar Histogram 64
Figure 35: Enlargement angle 68
Figure 36: Approximation of trajectories: a) without dynamics, b) with dynamics 69
Figure 37: Example of blocked directions 70
Figure 38: a) Polar histogram, b) binary polar histogram, c) masked polar histogram 72
Figure 39: Need for short-term memory 75
Figure 40: Problematic obstacle shape for a local obstacle avoidance algorithm 79
Figure 41: Projected trajectories 82
Figure 42: Effective direction of motion kp 87
Figure 43: Necessity of λλ 89
Figure 44: VFH* examples 92

V

LIST OF TABLES

Table 1: Sonar positions and orientations 12
Table 2: Command bytes 22
Table 3: LCD connections 28
Table 4: Power-on switches 29
Table 5: Backlight connections 30
Table 6: Basic power requirements 31
Table 7: Additional power requirements during development 31
Table 8: Battery types 32
Table 9: Battery specifications 33
Table 10: Battery test results 35
Table 11: Power system test results 35
Table 12: Single battery test data 36
Table 13: Input device types 46
Table 14: Main HC11 tasks 47
Table 15: HC11 slave tasks 50
Table 16: EERUF firing schedule 52
Table 17: Fire signals 53
Table 18: Ordered fire signals 54
Table 19: Look-up table for the first HC11 slave 55
Table 20: Look-up table for the second HC11 slave 55
Table 21: VFH* goal depth comparison 93

VI

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 The GuideCane 1
1.1.1 System Description 1
1.1.2 Functional Description 2

1.2 Review of Existing Devices 3
1.2.1 The White Cane 4
1.2.2 Conventional Electronic Travel Aids 4
1.2.3 Mobile Robots as Guides for the Blind 5
1.2.4 The NavBelt 5

1.3 Discussion of the GuideCane Concept 6
1.3.1 Guidance Signals versus Obstacle Information 6
1.3.2 Information Transfer 7

2. THE MECHANICAL HARDWARE 8

2.1 The GuideCane 8

2.2 The Wheel-base Structure 9
2.2.1 The Current Structure 9
2.2.2 Proposition of Improved Structure 10

2.3 The Brakes 11

2.4 The Sonar Alignment 12

3. THE ELECTRONIC HARDWARE 13

3.1 The System 13

3.2 The Computer 14
3.2.1 The PC/104 Standard 14
3.2.2 The Cyrix 486 15

3.3 The Electronic Interface 16
3.3.1 The Microcontroller HC11 17

3.3.1.1 The Motorola MC68HC11 Family 17
3.3.1.2 The MC68HC11E2 17
3.3.1.3 The Main HC11 19
3.3.1.4 The HC11 Slaves 20

3.3.2 The PC - HC11 Communication 21
3.3.2.1 The Write Command 21
3.3.2.2 The Read Command 23

3.3.3 The SPI Communication 24
3.3.4 The FIFO 25

3.3.4.1 The HC11 - FIFO Communication 25
3.3.4.2 The PC - FIFO Communication 26

VII

3.3.4.3 FIFO Data Encoding 27
3.3.5 The HCTL Quadrature Decoders 27

3.4 The LCD Screen 28
3.4.1 The Power-Up Sequence 29
3.4.2 The Backlighting 30

3.5 The Power System 31
3.5.1 The Power Requirements 31
3.5.2 The Battery Types 32
3.5.3 The NiMH Batteries 33
3.5.4 The Power Circuitry 33
3.5.5 Power System Evaluation 35

4. THE SENSORS AND ACTUATORS 38

4.1 The Ultrasonic Sensors 38
4.1.1 Properties of Sonars 38
4.1.2 EERUF - Sonar Control 39

4.2 The Steering Angle Measurement 42

4.3 The Encoders 43

4.4 The Servos 44

4.5 The Input Device 46
4.5.1 The Pointer 46
4.5.2 Other Input Devices 46

5. THE HC11 SOFTWARE 47

5.1 The Main HC11 Software 47
5.1.1 Task #1 - Communication and Execution 47
5.1.2 Task #2 - Generation of the PWM Signals 48
5.1.3 Task #3 - Continuous A/D Conversions 49

5.2 The HC11 Slave EERUF Implementation 49
5.2.1 The Multitasking Architecture 50
5.2.2 Task #1 - Communications and Treatment of Buffer 50
5.2.3 Task #2 - The Generation of the Fire Signals 51
5.2.4 Task #3 - Checking for Echoes 51
5.2.5 Task #4 - The Generation of the BINH Signals 51
5.2.6 The Fire Signal Table 52

6. THE PC SOFTWARE 56

6.1 The Main Loop 56

6.2 Odometry 56

6.3 Local Map Building 58

VIII

6.3.1 The Map Representation 58
6.3.2 The Map Building - HIMM 59
6.3.3 The Scrolling 60

7. OBSTACLE AVOIDANCE 61

7.1 Original VFH 61
7.1.1 The VFH Algorithm 61
7.1.2 First Stage - The Building of the Polar Histogram 61
7.1.3 Second Stage - Selection of the Steering Direction 65

7.2 VFH+ 66
7.2.1 Threshold with Hysteresis - The Binary Polar Histogram 66
7.2.2 Consideration of the Robot Size 67
7.2.3 Consideration of the Robot Trajectory 69
7.2.4 Cost-Based Direction Selection 72
7.2.5 Performance of the VFH+ Method 77

7.3 VFH* 78
7.3.1 Extremely Local Nature of VFH Method 78
7.3.2 Local Planning 80
7.3.3 A* Search 80
7.3.4 Search Parameters 81
7.3.5 The Expansion Step 81

7.3.5.1 Projection of Position and Orientation 82
7.3.5.1.1 The Projection Equations 82
7.3.5.1.2 The Projection Look-Up Lists 84

7.3.5.2 Cost Function 86
7.3.5.3 Heuristic Function 89

7.3.6 Reducing the Branching Factor 90
7.3.7 Performance of the VFH* Method 92

7.4 Wall Following 94

8. THE DEVELOPMENT ENVIRONMENT 96

8.1 The Tether Environment 96

8.2 The Palmtop Environment 96

8.3 The LCD Environment 97

8.4 The GuideCane Simulator 97

9. FUTURE IMPROVEMENTS 99

9.1 The Compass 99

9.2 Computer Vision 99

9.3 GPS - Global Navigation 100

IX

9.4 Speech Input/Output 100

9.5 Additional Sonars 101

10. CONCLUSION 102

1

1. Introduction

The topic of this Master thesis is the GuideCane, a novel device designed to help
blind or visually impaired people navigate safely and quickly among obstacles and other
hazards. The GuideCane is based on techniques developed at the University of Michigan
Mobile Robotics Laboratory during the past ten years.

1.1 The GuideCane

This section describes the components of the GuideCane system, and how they are
used to provide the desired functional capabilities. The hardware components will be
described in more detail in the chapters 2 to 4, while the details of the software will be
explained in the chapters 5 to 7.

1.1.1 System Description

Figure 1 shows a user walking with the GuideCane. Much like the widely used white
cane, the user holds the GuideCane in front of himself1 while walking. The GuideCane is
much heavier than the white cane, but it rolls on wheels that support the GuideCane's
weight during regular operation. A pair of wheels are located at the distal end of the
GuideCane. A steering servo motor, operating under the control of the GuideCane's built-
in computer, can steer the wheels left and right, relative to the cane. An array of ultrasonic
sensors is mounted in a semi-circular fashion above the wheel-base. Attached to each
wheel is an incremental encoder, which is used by the “onboard” computer to compute
(i.e., by means of odometry) the relative motion of the traveler, as well as the momentary
travel speed. A miniature pointer, which can be operated by the thumb, allows the user to
specify a desired direction of motion.

1 For the remaining part of this thesis, we will assume that the user is male for the purpose of

readability.

2

Figure 1: The GuideCane

1.1.2 Functional Description

During operation, the user holds the GuideCane in one hand, so that the wheels are on
the ground right in front of him. The GuideCane is slightly offset to the side of the hand
that holds the cane. The user prescribes a desired direction of motion with the input
pointer. This direction is understood to be relative to the current absolute orientation of
the GuideCane. For example, if the GuideCane is facing north and the user pushes the
pointer forward, then the system would lock into “north” as the desired direction of travel
and steer the wheels accordingly. If the user indicated “left” as the desired direction of
travel, then the computer would add 90° to the current direction of travel and steer the
wheels to the left as soon as this direction is free of obstacles.

3

While traveling, the ultrasonic sensors
detect any obstacle in a 180° wide sector
ahead of the user. Using the University of
Michigan’s previously developed,
patented Error Eliminating Rapid
Ultrasonic Firing (EERUF) method for
firing the sonars, in combination with
VFH*, an improved version of UM’s
patented obstacle avoidance technique
called Vector Field Histogram (VFH),
allows for travel at fast walking speeds
[6][9].

These techniques enable the system to
instantaneously determine an optimal
direction of travel even among densely
cluttered obstacles. For example, if the
system was “locked” into a desired travel
direction of north, but an obstacle blocked
the way (see Step 1 in Figure 2), then the
obstacle avoidance algorithm would
prescribe an alternative direction that
would clear the obstacle but would be
facing north as close as possible (see Step
2 in Figure 2).

Figure 2: An obstacle avoidance maneuver

Once the wheels begin to move sideways to avoid the obstacle, the user feels the
resulting horizontal rotation of the cane (see Step 3 in Figure 2). In a fully intuitive
response, requiring virtually no training time, the traveler changes his orientation to align
himself with the cane at the “nominal” angle. In practice, the user's walking trajectory
follows the trajectory of the GuideCane similar to the way a trailer follows a truck. Once
the obstacle is cleared, the wheels steer back to the original desired direction of travel. The
new line of travel will be offset from the original line of travel. Depending on the
circumstances, the traveler may wish to continue walking along this new line of travel, or
the system can be programmed to return to the original line of travel. This latter option is
made possible by the full odometry capability provided by the wheels and the attached
encoders.

One particularly difficult problem for blind pedestrians is that of stairs. The
GuideCane offers separate solutions for down-steps and up-steps. Down-steps are
detected in a fail-safe manner: when a down-step is encountered, the wheels of the
GuideCane drop off the edge – without a doubt a signal that the user can not miss. Up-
steps can be detected by additional front-facing sonars that are not implemented yet. A
simple method for detecting up-steps is described in [10].

1.2 Review of Existing Devices

4

1.2.1 The White Cane

The most successful and widely used travel aid for the blind is the white cane. This
mechanical device is used to detect obstacles, uneven surfaces, borders, holes, steps and
other hazards or clues. The white cane is inexpensive and is so lightweight and small that
it can be folded and tucked away in a pocket. However, users must be trained in the use
of the white cane over periods of hundred hours which is a substantial “hidden” cost. An
inconvenience of the white cane is that the user is required to actively scan the small area
ahead of him. In addition, the white cane is not well suited to detect potentially dangerous
obstacles at head level.

1.2.2 Conventional Electronic Travel Aids

During the past three decades, several electronic travel aids (ETAs) were introduced
that aimed at improving the blind users’ mobility in terms of safety and speed. These
more high-tech devices have been on the market for many years but appear to lack utility,
and, consequently, are not widely used [4].

The C-5 Laser Cane – was introduced by Benjamin et al. [2]. It is based on optical
triangulation with three laser diodes and three photo-diodes as receivers. The Laser Cane
can detect obstacles at head-height, drop-offs in front of the user, and obstacles up to a
range of 1.5 m or 3.5 m ahead of the user.

The Mowat Sensor – is a hand-held ultrasonic-based device that informs the user of
the distance to detected objects by means of tactile vibrations [38]. The frequency of the
vibration is inversely proportional to the distance between the sensor and the object.

The Nottingham Obstacle Detector (NOD) – is a hand-held sonar device that
provides auditory feedback, in which eight discrete levels of distance are distinguished by
different musical tones [3].

The Binaural Sonic Aid (Sonicguide) – comes in the form of a pair of spectacle
frames, with one ultrasonic wide-beam transmitter mounted between the spectacle lenses
and one receiver on each side of the transmitter [20]. Signals from the receivers are
frequency shifted and presented separately to the left and right ear. The resulting
interaural amplitude difference allows the user to determine the direction of an incident
echo and thus of an obstacle. The distance to an object is encoded in the frequency of the
demodulated low-frequency tone.

5

Three fundamental shortcomings can be identified in all ETAs discussed in the
foregoing sections:

1. The user must actively scan the environment to detect obstacles (no scanning is
needed with the Sonicguide, but that device does not detect obstacles at floor level).
This procedure is time-consuming and requires the traveler's constant activity and a
conscious effort.

2. The traveler must perform additional measurements when an obstacle is detected

in order to determine the dimensions of the object. The user must plan a path around
the obstacle − Again, a time-consuming, conscious effort that reduces the walking
speed.

3. One problem with all ETAs based on acoustic feedback is their interference (called

masking) with the blind person's ability to pick up environmental cues through hearing
[12][20][25].

1.2.3 Mobile Robots as Guides for the Blind

In general, one could argue that any mobile robot with obstacle avoidance can be used
as a guide for the blind. However, mobile robots are inherently unsuited to the task of
guiding a pedestrian. The foremost limitation of mobile robots is that they are large,
heavy, and incapable of climbing up or down stairs or boardwalks. This approach would
actually burden the blind person with the additional, severe handicap of limited mobility.

Another problem of this approach is that the speed of the robot can make the user feel
uncomfortable, pulling a cautious user or slowing a confident user unnecessarily down.
To overcome this problem, an additional interface function would be needed with which
the user could indicate the desired speed to the robot. However, with the GuideCane, the
user is in direct control of the speed so that it is much more intuitive and much easier to
use.

1.2.4 The NavBelt

During the past six years, the University of Michigan Mobile Robotics Laboratory has
conducted active research in applying mobile robot obstacle avoidance technologies to
assistive devices for the handicapped. In 1989, the concept of the NavBelt was developed.
The NavBelt is a portable device equipped with ultrasonic sensors and a computer. A
prototype of this system was built and tested [31].

6

The NavBelt provided two modes of operation:

1. In the image mode, the NavBelt produced a 120° wide view of the obstacles ahead
of the user similar to a radar screen image. This image was then translated into a series
of directional (stereophonic) audio cues through which the user could determine which
directions were blocked by obstacles and which directions were free for travel. The
problem with this method lay in the fact that a considerable conscious effort was
required to comprehend the audio cues. Because of the resulting slow response time,
our test subjects could not travel faster than roughly 0.3 m/sec. And even this marginal
level of performance required hundreds of hours of training time.

2. Another mode of operation was called guidance mode. In this mode, it was

assumed that the system knew the traveler's momentary position and the traveler's
desired target location. Under these conditions, the NavBelt only needed to generate a
single (thus, low-bandwidth) signal that indicated the recommended direction of travel.
It was much easier to follow this signal, and walking speeds of 0.6 - 0.9 m/sec were
achieved. The main problem was that in reality the system would not know the user's
momentary position, as required by the guidance mode.

1.3 Discussion of the GuideCane Concept

The GuideCane is unique in its ability to physically direct the user around obstacles
and toward a user-prescribed target. Indeed, the uniqueness is twofold:

1.3.1 Guidance Signals versus Obstacle Information

Existing ETA's are designed to notify the user of obstacles, usually requiring the user
to perform some sort of scanning action. Then, the user must evaluate all of the obstacle
information, which comprises of the size and proximity of each obstacle, and choose a
suitable travel direction. In sighted people, such relatively high bandwidth information is
processed almost reflexively, usually without the need for conscious decisions. Nature
had millions of years to perfect this skill. However, the evaluation of obstacle information
presented acoustically is a new skill that must be acquired over hundreds of hours of
learning. Even then, using such a skill takes a great deal of conscious effort, and thus
processing time. The required effort further increases with the number of detected
obstacles.

The GuideCane is fundamentally different from other devices in that it “views” the
environment and computes the momentary optimal direction of travel. The resulting
guidance signal is a single piece of information – a direction – which means that the
bandwidth of the information is much smaller. The consequence is that it is far easier,
safer, and faster to follow the low-bandwidth guidance signal of the GuideCane than to
follow the high-bandwidth information of other existing systems.

7

1.3.2 Information Transfer

In prior research with the NavBelt, different methods of using binaural (stereophonic)
signals to guide the user around obstacles were tested. Test users found that it is generally
very difficult to recognize and react to such signals at walking speed. Even after nearly
100 hours of training, the Ph.D. student who conducted this research could not walk
safely at walking speed.

By contrast, tests have shown that it is much easier and more intuitive to follow the
GuideCane. As an initial test, before obstacle avoidance was implemented, a radio-
controlled joystick receiver was installed inside the sensor head, which allowed a sighted
assistant to steer the GuideCane remotely. A sightless person could then walk with the
GuideCane, “steered” by the assistant. As expected, this test showed that any subject
could immediately follow the GuideCane at walking speed and among densely cluttered
obstacles. This test verified the key-hypothesis, namely, that following the GuideCane’s
path was completely intuitive, even at fast walking speed.

This success can be credited to another unique feature of the GuideCane: Information
transfer through direct physical force. This process is completely intuitive, which means
that anybody can use the system immediately and without learning how to interpret
artificially defined acoustic or tactile signals (as with existing ETAs). Yielding to external
forces is a reflexive process that does not require a conscious effort. Moreover, most
visually impaired people are used to being guided by other people in a very similar way.

Even though the GuideCane's wheels are unpowered, the GuideCane can apply a
substantial amount of physical force Fd on the user if he fails to respond to a change of
direction. This force is the result of the sideways motion of the wheels when avoiding an
obstacle. The resulting rotation of the cane forces a clearly noticeable rotation of the hand
that holds the near end of the cane.

A second force, immediately noticeable after the guide wheels change their orientation
(but even before the user feels the rotation of the cane), is the increased reaction force that
is opposed to pushing the cane forward. When walking while the cane and the wheels are
aligned, the user must only overcome the reactive force Fr resulting from the friction in
the bearings and the roll resistance of the wheels. If the wheels steer an angle θ in either
direction, then the traveler has to push the cane with a higher force Fp in order to
overcome the reactive force of the wheels:

F
F

Fp
r

r= ≥
cosθ

with] [θ π π∈ − 2 2,

 This change in reactive force is immediately felt by the user and prepares him for an
upcoming steering maneuver.

The user also feels the torque of the main servo turning the wheel-base. However, the
force required to counteract the servo torque is relatively small due to the distance
between the main axis and the user.

8

2. The Mechanical Hardware

2.1 The GuideCane

The GuideCane must be as light as possible, so that the user can easily lift it up, e.g.
for going up- or downstairs. For this reason, aluminum was chosen to be the material for
most of the parts that are subject to forces. Acrylic, a plastic, is used for the light housing.
In a commercial version of the GuideCane, the plastic housing could consist of only two
pieces produced by injection molding or vacuum forming. All of the electronics are
placed inside the acrylic housing for protection. The part that holds eight sensors in a 120°
arc was heat treated and then formed into an arc.

The GuideCane is currently equipped with 10 Polaroid ultrasonic sensors. The sensor
devices are held in place by rubber O-rings. Each sonar is connected to a small interface
which is in turn connected to the main interface. The ten interfaces are split up into two
stacks of five, placed in the two front corners. Lightweight plastic spacers are used to
stack and insulate them. To reduce the effects of electronic crosstalk, the connections
between the interfaces and sonars are made so that the length of the wires is minimized.
Furthermore, these wires are placed as far apart from each other as possible.

Figure 3: GuideCane interior

9

The aluminum cane is attached to a hinge which is fixed to a pivot screw. In this way,
the paths of all forces go through the metal parts and not through the plastic of the
housing. The angle of the cane can be adjusted by a wing nut and a thumb screw to
accommodate users of different heights. The two aluminum brackets for the adjustment
screw are attached to the housing base. To reduce the stress in the plastic when the
GuideCane is lift up, the connection between the bracket fixations and the pivot screw is
strengthened with an aluminum plate.

2.2 The Wheel-base Structure

2.2.1 The Current Structure

The wheel-base consists of an aluminum bracket which is reinforced by an L-shaped
steel bracket. Each wheel is attached to the wheel-base by two ball bearings. Each wheel
axis is also equipped with an encoder, allowing the GuideCane to perform odometry as
explained in section 6.3. A photo of the wheel-base is shown in Figure 4:

Figure 4: Current wheelbase

The wheel-base is attached to the GuideCane housing by a pivot screw, consisting of
a ball bearing and an axis with one threaded end. The main servo is fixed to the housing
bottom. To reduce the risk of damaging the main servo by an object, the servo is placed
behind the wheel-base. The wheel-base is coupled to the main servo through a push-rod.
One end of the push-rod is connected to the servo arm through a steel clevis while the
other end is connected to the wheel-base through a ball link.

10

Unfortunately, the wheel-base design is not optimal. The main problem is its high
moment of inertia, which requires a very strong servo to rotate it without oscillating.
Strong servos are big and consume a lot of power, which is a disadvantage in a battery
powered system. To reduce the wheel-base moment of inertia, several holes were drilled
into the reinforcement bracket and the two attachments located at its extremities.

Another problem is the possibility of very strong mechanical shocks on the servo
shaft. When a wheel bumps into an obstacle, e.g. a small irregularity in the ground that
can not be detected by the sonars, this shock translates into a very high torque on the
servo shaft because of the long wheel-base.

Furthermore, as the GuideCane is placed on only two wheels, the user has to hold the
cane so that the mobile robot stays horizontal. When the wheels are turned to either side,
the user has to apply a torque to keep the mobile robot from tipping over. The amount of
this torque is reasonable, however, it could become stressful if the GuideCane is used for
more than 15 minutes.

2.2.2 Proposition of Improved Structure

To overcome these problems, a new wheel-base structure is proposed as shown in
Figure 5. With this configuration, the GuideCane is equipped with three wheels. Two of
the wheels are attached to the base by ball bearings. Again, each of these wheels is
equipped with an encoder. The third wheel is rotated by a servo. This new configuration
solves all the above mentioned problems.

First of all, only the third wheel is rotated by the servo. Moreover, no large moment is
required to turn this wheel as it is directly in line with the servo axis of rotation. As a
result, a much weaker, smaller, and less power consuming servo can be used.

Secondly, the rotational shocks are reduced by at least a factor of 3.5. In the worst
case, the distance between the point of contact and the servo axis is only half the wheel
diameter.

Finally, as the GuideCane is placed on three wheels, it is inherently stable. This is not
only much more comfortable for the user, but it also guarantees that the GuideCane stays
always horizontal.

Unlike in the current configuration, the cane can not be fixed rigidly to the robot. To
guarantee that all three wheels stay in contact with the ground, the cane must have a
vertical degree of freedom. It turned out that this is a very nice feature, as the angle of the
cane adapts automatically to the height of the user. So, the mechanism for the cane angle
adjustment is not necessary anymore. The cane fixation must also have a horizontal
degree of freedom. Otherwise, the user could override the direction of motion. The angles
of these two degrees of freedom must be limited mechanically so that the GuideCane can
easily be lift up and put down.

To test these hypotheses, a simple prototype was built similar to the one described in
section 1.3.2. This prototype showed that it was still very intuitive to follow it. With the
angle limitations on the cane fixation, it is no problem to lift it up and put it down.

11

The most striking feature was the fact that it is much more comfortable to hold this
prototype. One reason is that the robot is firmly placed on three wheels, so that the user
does not have to apply any torques at all to balance it. Another reason is the vertical
degree of freedom which adapts to vertical movements of the user's hand.

Figure 5: New proposed wheel-base structure

2.3 The Brakes

Both wheels are equipped with a brake, so that the GuideCane can slow the user
down in densely cluttered environments or even stop him in a dead-end. Each brake
consists of a small servo, a plug pin, and a hard rubber disk as shown in Figure 6:

a) b)

Figure 6: Brake: a) front view, b) side view

12

2.4 The Sonar Alignment

The current version of the GuideCane is equipped with ten sonars as shown in Figure
7. Eight sonars are placed at the front of the GuideCane on an arc with a 20 cm radius.
The center of the arc lies 6.5 cm behind the center of the GuideCane which is defined as
the center of the main axis. The angular spacing between these sonars is 15°, which
assures complete coverage as agreed by most mobile robotics researchers. These sonars
cover the area ahead of the GuideCane with an angular spacing of 120°. The other two
sonars, facing to both sides, are very useful for wall following and for going through
narrow openings.

The positions and the directions of the sonars, relative to the center of the GuideCane
are summarized in Table 1. These values are stored in a table for faster software
execution.

Sonar # 1 2 3 4 5 6 7 8 9 10

Position x [mm] 21 58 84 98 98 84 58 21 -100 -100

Position y [mm] 158 121 76 26 -26 -76 -121 -158 70 -70

Orientation 52.5° 37.5° 22.5° 7.5° -7.5° -22.5° -37.5° -52.5° 90° -90°

Table 1: Sonar positions and orientations

Figure 7: Sonar placement

13

3. The Electronic Hardware

3.1 The System

The electronic architecture of the GuideCane is shown in Figure 8. The main brain of
the GuideCane is a PC/104 486 running at 33 MHz. The main advantage of using a PC
instead of a customized microcontroller board is its development environment. The PC
can easily be hooked up to a CRT monitor and a keyboard. It can even be connected to a
LCD display as explained in section 8.3. The PC beeper can be used to give acoustic clues
to either the user or the developer. The first serial port is used by the compass, while the
second serial port is used by the input pointer. The currently used pointer can easily be
replaced by a different input device as most of these devices connect to the serial port.

The PC is connected to the main interface through its bi-directional parallel port. This
board serves as the interface between the PC and the sensors (encoders, sonars,
potentiometer) and the actuators (main servo and brakes). This interface allows the PC to
get information from the different sensors. It also generates the specific control signals for
the sonars and servos. The interface consists of three MC68HC11E2 microcontrollers,
two counters and some logic devices. In short, the GuideCane is an embedded system
equipped with four microprocessors working fully in parallel.

Figure 8: The GuideCane prototype block diagram

14

The multiprocessor interface executes many time-critical tasks which would take too
many resources if executed by the main PC. The interface receives commands from the
PC and then takes care of the sensors and actuators without any further involvement of
the PC. Most of the sensor data is preprocessed by the board before being communicated
to the PC. This concept minimizes not only the communications between the PC and the
board, but it also minimizes the computational power required by the PC to control the
sensors and actuators. So, most of the PC’s computational power can be used for
medium and high level software.

3.2 The Computer

3.2.1 The PC/104 Standard

The main brain of the GuideCane is an embedded PC/104 computer. PC/104 is a
relatively new standard defining the electrical and mechanical specifications for a compact
version of the IEEE P996 (PC and PC/AT) bus [29]. These specifications have been
optimized for the unique requirements of embedded system applications. The main
features of this standard are:

• Small size: 3.550 x 3.775 inches.
• Connectors: 64 and 40 pin male/female headers replace standard PC edge

connectors.
• Stacks: Backplanes and card cages are eliminated by a self-stacking bus.

Stacked modules are just 0.6 inches apart.
• Power: Most signals have reduced bus drive of 4-6 mA which reduces the

power consumption (1-2 W per card) and heat dissipation.

These features make the PC/104 standard very attractive for embedded applications.
PC/104 controllers combine high computing power with excellent resistance to
contamination, shock, and vibration.

Thousands of products and utility packages are available from over hundred
manufacturers. Some of these packages are especially interesting for the GuideCane, e.g.
the GPS module. And as a PC/104 offers full architecture, hardware and software
compatibility with the PC bus, all widely available products for regular PC’s can also
easily be integrated.

15

3.2.2 The Cyrix 486

The current stack consists of three PC/104 modules:

1. Main CPU: Cyrix 486 at 33 MHz with math co-processor and 4 MB
DRAM.

2. Super VGA utility module.
3. 125 MB Hard-disk.

However, two of the three modules are only required during development. It is
obvious that the VGA utility module is unnecessary after development. In addition, even
the hard-disk module can be eliminated. Once the software is completed, it can be stored
in an EPROM that can be placed in the empty socket U10 of the main CPU board. In
addition to eliminating one module, this also eliminates potential problems due to the
moving parts in the hard-disk. Being a solid state device, the EPROM is much less
sensitive to shocks and vibrations than the hard-disk is.

Therefore, the proposed final version of the GuideCane will consist of only the main
CPU module which is not only a very compact and inexpensive solution but also requires
less power than the current stack. The proposed final architecture of the GuideCane is
shown in Figure 9.

If it turns out that the chosen main CPU is too slow, it could be replaced by a more
powerful module. There are currently commercially available PC/104 modules that are
equipped with a 586 processor running at 133 MHz.

Figure 9: The final GuideCane block diagram

16

3.3 The Electronic Interface

The architecture of the electronic multiprocessor interface is shown in Figure 10. The
communication between the PC and the interface is based on the parallel port of the PC.
The parallel port consists of an 8-bit bi-directional data bus, 4 digital outputs and 5 digital
inputs. In the current version of the interface, all but 2 digital inputs are in use. The 8-bit
bi-directional data bus together with the 4 digital outputs and an additional 2-4 decoder
allows the PC to communicate with the main HC11, the FIFO and the two HCTL
quadrature decoders. Two of the digital inputs are used for the handshaking with the
HC11. Another digital input is used to supervise a FIFO flag.

This bus architecture permits parallel communication at high speed. Furthermore,
most communications are buffered to minimize delays.

Figure 10: Interface schematic

17

3.3.1 The Microcontroller HC11

3.3.1.1 The Motorola MC68HC11 Family

The Motorola MC68HC11 family consists of a wide range of advanced 8-bit
microcontrollers [28]. A microcontroller is defined as a microprocessor with memory and
major peripheral functions on the same chip. Microcontrollers are especially suited for
embedded applications. The block-diagram of a typical MC68HC11 member is shown in
Figure 11 [28].

The peripheral functions of all MC68HC11 members include:

• Eight-channel A/D converter with an eight bit resolution.
• Asynchronous serial communications interface (SCI).
• Synchronous serial peripheral interface (SPI).
• 16-bit timer with three input-capture lines, five output-compare lines and a

real-time interrupt function.
• An 8-bit pulse accumulator can count external events or measure external

periods.
• Self-monitoring circuitry: watchdog, clock monitor system and illegal

opcode detection.
• Two software-controlled power-saving modes, WAIT and STOP, are

available to conserve power.

3.3.1.2 The MC68HC11E2

The difference between the MC68HC11 family members lies mainly in the amount of
their different kinds of memories. A very popular member in the robotics community is
the MC68HC11E2 which has 2 K of EEPROM, more than any other family member. This
was the main reason for the selection of the MC68HC11E2.

The advantage of having that much EEPROM is that it allows one to store reasonably
sized programs. Two kilobytes of program space may not seem much to the regular
programmer, but it is mostly enough for microcontroller-type programs written in
assembly. As the HC112 bus runs at only 2 MHz and EEPROM space is limited, it is
preferable to program it in assembly instead of a higher level language. Fortunately, the
HC11 has a very nice instruction set which is one of the most orthogonal ones.

As the software can be stored in the internal EEPROM, the microcontroller can be
used in single-chip mode with no external memory.

2 For the remaining part of this thesis, the term MC68HC11E2 will be abbreviated by HC11.

18

Figure 11: The MC68HC11A8 block diagram

19

3.3.1.3 The Main HC11

A simplified diagram of the main HC11 is shown in Figure 12. Port A is used to
generate the PWM signals for up to four servos. Three of the four unused pins on this
port are input capture lines available for future extensions. The fourth currently not used
pin is the pulse accumulator input.

Port B is used to independently reset the other logic devices on the interface, to select
a SPI slave, and for hand-shaking with the PC. Port C together with the R/W and AS lines
is used to communicate with the PC over its bi-directional parallel port.

The asynchronous serial communications interface (SCI) of Port D is used to
download the program from the PC into the HC11’s internal EEPROM. For future
extensions, a standard serial port device can be connected to this port.

The synchronous serial peripheral interface (SPI) is used to communicate with the two
HC11 slaves as explained in section 3.3.3. Additional SPI devices can also be easily added
to the current architecture.

Port E is the eight-channel A/D converter with eight bits of resolution. Currently only
one of the eight analog inputs is used by the main servo potentiometer.

The E signal, a clock output running at 2 MHz is used to drive the quadrature decoder
devices as explained in section 3.3.5.

Figure 12: The main HC11

20

3.3.1.4 The HC11 Slaves

A simplified diagram of a HC11 slave is shown in Figure 13. Both slaves are
identically integrated into the hardware system. However, there are a few minor
differences in their software. For reasons of limited input/output lines and speed, each
HC11 slave takes care of eight sonars.

Four outputs of Port A together with a double 2-4 decoder are used to generate the
eight BINH signals for the sonars. Port B is used to generate the fire signals for the sonars.
Port C together with PA3 is used in an open-collector mode to write the sonar results into
the FIFO. Port D is used the same way as for the main HC11. The R/W and PA0 signals
are used to synchronize the access to the FIFO bus.

Figure 13: The HC11 slave

21

3.3.2 The PC - HC11 Communication

The communication between the PC and the HC11 microcontrollers is done through
the main HC11 and the FIFO. The communication between the PC and the main HC11 is
based on handshaking supported by the HC11 hardware. The procedure of sending a
command from the PC to the main HC11 is explained in section 3.3.2.1. The procedure of
reading from the main HC11 is explained in section 3.3.2.2.

The PC can not communicate directly with the two HC11 slaves. To send a command
to the HC11 slaves, the PC sends the command to the main HC11 which will then send it
to the HC11 slaves through the SPI as explained in section 3.3.3. To read the sonar data
from the HC11 slaves, the PC reads the buffered data from the FIFO as explained in
section 3.3.4.

3.3.2.1 The Write Command

The time diagram for a write command is shown in Figure 14. The STRB signal is
automatically generated by the HC11 hardware. The STRA signal and the data are
controlled by the PC through its software. The STAF is an internal flag of the HC11. The
ReadPORTCL represents the corresponding HC11 software command .

Normally, the main HC11 is in input mode waiting for a new command from the PC.
The STRB signal indicates to the PC that the HC11 buffer is ready for a new command
byte. It is important to note that even though the HC11 may be busy executing some task,
the PC can latch a command byte into the HC11 buffer whenever the buffer is empty.
This asynchronous communication allows the system to take full advantage of the
multiprocessor architecture.

If the STRB signal is high, the PC can output the command data on the bus and latch
it into the HC11 buffer by asserting the STRA signal (falling edge). This operation will
automatically deassert the STRB signal indicating to the PC that the HC11 buffer is full. It
will also assert the STAF flag which tells the HC11 that there is new data in its buffer.
When the HC11 detects that the STAF is asserted, it will read the data from the buffer.
This action will deassert the STAF flag and automatically assert the STRB signal. The
asserted STRB signal indicates to the PC that the HC11 is ready for another command.
Meanwhile, the HC11 interprets the new command byte and executes the desired
operation.

22

Figure 14: Write command

To minimize the communication delays, it is preferable to send only one byte for each
command to the HC11. As long as only one byte is sent, the PC can simply latch it into
the HC11 buffer without waiting for the HC11. If the command consisted of two bytes,
two consecutive writings would be necessary, but these can not be handled by the HC11
hardware alone. In such a case, the PC could still latch the first byte into the HC11 buffer,
but it would then have to wait for the HC11 to read this byte out of its buffer before
sending the second byte.

In the current implementation, all commands are encoded in one byte as summarized
in Table 2:

Command
Byte

Command

1xxx’xxxx Position of main servo (128 positions)
0000’xxxx Activate resets on Port B (PB0-PB3)
0001’xxxx EERUF modes (1-15) and stop sonars (0)
0010’xxxx Fire single sonar (index 0-15)
0011’xxxx Not used yet (16 values)
0100’xxxx Right brake command (16 positions)
0101’xxxx Left brake command (16 positions)
0110’xxxx Main servo speed (16 values)
0111’0000 Read potentiometer of steering axis
0111’xxxx Not used yet (15 values): xxxx ≠ 0

Table 2: Command bytes

23

3.3.2.2 The Read Command

The time diagram for a read command is shown in Figure 15. All signals have the
same meaning as in the previous section. In addition, the Mode signal indicates to the PC
if the main HC11 is in the input or output mode, and the WritePORTCL represents the
corresponding HC11 software command.

To read a byte from the HC11, the PC first has to send a command to the HC11
indicating the desired information. Therefore, the entire communication consists of a write
operation followed by a read operation. The write operation is identical to the process
described in the previous section. However, once the command byte is interpreted, the
HC11 retrieves the desired information and puts it into an internal register. This
automatically changes the HC11 port to a readable output mode and deasserts STRB. To
indicate to the PC that the data is ready, the Mode signal is set high. The PC then reads
the data and asserts STRA indicating to the HC11 that it received the data. The STRA
signal also automatically resets the HC11 output port into an input port to liberate the data
bus for other communications. The HC11 then clears the STAF flag by reading its buffer,
and deasserts the Mode signal to indicate to the PC that it is ready for a new command.

Figure 15: Read command

This mode is currently only used when the PC reads the value of the potentiometer.
For future extensions, this mode will be useful to read additional sensors connected to the
main HC11 analog port. It will also be useful to read data from devices that can be
connected to the main HC11's SPI or SCI port.

24

3.3.3 The SPI Communication

Both HC11 slaves are connected to the main HC11 through the synchronous serial
peripheral interface (SPI). The SPI interface is used primarily to allow the microcontroller
to communicate with peripheral devices. Peripheral devices range from simple shift
registers to complete subsystems, such as an A/D converter or another HC11. The SPI
system is flexible enough to interface with numerous standard peripherals from several
manufacturers. Data rates as high as 1 Mbit/sec are accommodated with one of the HC11
as the SPI master.

An example with four SPI devices connected to the main HC11 is shown in Figure 16.
In the current interface architecture, there are only two SPI slaves. The main HC11 acts as
the SPI master while the two HC11 slaves act as SPI slaves. This architecture allows one
to easily add more SPI devices for future extensions.

Figure 16: SPI architecture

During an SPI transfer, an 8-bit character is shifted out one data pin while an 8-bit
character is simultaneously shifted in a second data pin. So, one byte is simultaneously
transmitted and received. The serial clock line (SCK) synchronizes shifting and sampling
of the information on the two serial data lines (MOSI and MISO). The slave select line
(SS) allows individual selection of a SPI slave.

The use of the SPI is extremely simple as it is fully supported by the HC11 hardware.
All SPI transfers are started and controlled by a master SPI device, in this case the main

25

HC11. To transfer a byte to a HC11 slave, the main HC11 simply asserts the
corresponding slave select signal and writes the byte into its SPDR register. The hardware
of the two involved HC11's then takes care of the communication. At the end of the
communication, the bytes that were originally stored in the two SPDR registers are
swapped. To indicate the end of the SPI communication, the SPIF (SPI Transfer
Complete Flag) is asserted.

3.3.4 The FIFO

The interface is equipped with a FIFO whose purpose is to buffer the outputs of the
two HC11 slaves. The currently used FIFO is a high-density first-in first-out buffer with a
depth of 1024 bytes. This buffer allows the HC11 slaves to write their data into the FIFO
whenever they have a sonar reading as explained in section 3.3.4.1. It also allows the PC
to read the sonar data from the FIFO whenever the PC wants to as explained in section
3.3.4.2. Hence, due to the FIFO, the PC can asynchronously read the data from the HC11
slaves. This buffered communication allows the architecture to take full advantage of its
distributed computing power.

3.3.4.1 The HC11 - FIFO Communication

The two HC11 slaves share an output bus and the /W FIFO output to write the sonar
data into the FIFO. To avoid access conflicts, the HC11 slaves use their Bus? and Bus!
lines. The Bus! output of each slave is connected to the Bus? input of the other slave.
Asserting the Bus! output means that the slave is in control of the bus or that it desires to
be it. A problem only occurs when both slaves try to take control of the bus
simultaneously. To resolve this conflict, the first slave is given priority. The algorithms for
the two slaves are shown in Figure 17. The precedence of the first slave over the second
one is realized by the different reaction to the case when the result of the second Bus?
inquiry is positive.

If this method failed for whatever reason, one or both slaves could become damaged
by short-circuiting each other. To eliminate this risk, however unlikely it is, the nine
shared output lines are used in an open-collector mode with pull-up resistors. Therefore, if
both slaves put their data on the shared bus no damage would occur. The only effect
would be that wrong data would be written into the FIFO. However, in most cases, this
would be detected by the PC reading the wrong data from the FIFO.

26

a) b)

Figure 17: FIFO bus control for: a) slave 1, b) slave 2

3.3.4.2 The PC - FIFO Communication

The PC can easily determine if there is any data in the FIFO by checking the FIFO’s
“empty flag” (EF). If the EF flag is deasserted, the PC knows that there is new sonar data
in the FIFO. The PC can then read out all sonar data by continuing reading until the EF
flag asserts again. This method is very efficient, as the PC only has to check one input line
to determine if new sonar data is available.

The PC could also be connected to the “half full” (HF) and “full full” (FF) flags of the
FIFO. These flags are currently not used to save some of the parallel port input lines for
future extensions. The HF could be used to tell the PC that it should read out the FIFO
data. If the FF flag was asserted, it would indicate that probably a data overflow occurred
because the PC waited too long before reading the FIFO. The PC would then have to send
a reset command to the main HC11 to reset the two slaves and the FIFO. Next, the PC
would have to send the command to start the sonars again. Therefore, if for whatever
reason the FIFO filled up, the PC would instantly be aware of the problem and could go
on without any interaction by the user.

A potential problem of the parallel port is “ringing”. Misreadings due to ringing occur
if the FIFO lines are directly connected to the PC parallel port. To eliminate ringing, each
of the eight data lines is terminated by a resistor/capacitor network.

27

3.3.4.3 FIFO Data Encoding

As both operations, writing to and reading the FIFO, are extremely fast, there is no
need to encode the sonar data in as few bytes as possible. For each sonar reading, five
bytes are transmitted:

1. Start byte, currently $603.
2. Sonar index between 1 and 16.
3. High byte of 16 bit time of flight in increments of 8 µs.
4. Low byte of 16 bit time of flight in increments of 8 µs.
5. Stop byte, currently $80.

The start and stop byte are not necessary, but they increase the probability of
detecting a communication problem. Even without these two bytes, the PC could detect a
problem by verifying that the sonar index is between 1 and 16. As the extra time required
by the start and stop bytes is practically negligible, these two bytes are kept for safety
reasons.

3.3.5 The HCTL Quadrature Decoders

The output of each encoder consists of two quadrature signals. By quadrature
decoding these two signals, the encoder resolution is multiplied by a factor of four as each
edge, rising and falling, is taken into account. However, quadrature decoding is a time-
intensive task with restrict requirements.

A very effective and simple solution is the use of the HCTL quadrature decoder
interface integrated circuits from Hewlett Packard. The HCTL-2016 features full
quadrature encoding with a 16-bit up/down counter, latched outputs, and high noise
immunity due to Schmitt trigger inputs and digital noise filters. Moreover, due to the 8-bit
tristate output, the two quadrature encoders can simply be connected to the 8-bit PC-
interface bus.

The quadrature decoders require a clock signal. Instead of adding some clock
circuitry, the E output of the main HC11 is used. The E output is a clock signal with a
frequency of 2 MHz. To read the 16-bit content of the counter, the low and high bytes can
be accessed independently by the use of the SEL signal as shown in Figure 18:

Figure 18: Timing of quadrature decoder reading

3 The $ symbol means that the following number is in the hexadecimal format.

28

3.4 The LCD Screen

The GuideCane is equipped with a color LCD display to improve the development
environment (see also section 8.3). The PC’s CM106 super VGA utility module supports
most available LCD displays. For reasons of price, weight, size, and power consumption,
the Optrex DMF-50414 STN color display was selected. Its resolution is 640 x 480 pixels.
The power consumption is about 1.9 W, the sum of the logic power consumption (0.8 W)
and the backlight power consumption (1.1 W).

The CM106 module must be configured according to the LCD panel class. The
Optrex color LCD display is classified as a C8DD-16 panel. Therefore, the switches 1
through 3 on the DIP switch S1 of the CM106 module must be set to On-Off-On or Low-
High-Low.

The LCD display is connected to connector P4 of the VGA utility module through
two band connectors. The connections are summarized in Table 3:

Pin name CM106 P4 Optrex LCD
DL0 / Blue0 1 17
DL1 / Blue1 2 18
DL2 / Blue2 3 19
DL3 / Green0 4 20
DL4 / Green1 5 21
DL5 / Green2 6 22
DL6 / Red0 7 23
DL7 / Red1 8 24
DU7 / Red3 9 15
DU6 / Red2 10 14
DU5 / Green5 11 13
DU4 / Green4 12 12
DU3 / Green3 13 11
DU2 / Blue5 14 10
DU1 / Blue4 15 9
DU0 / Blue3 16 8
Data Shift Clock 18 3
Panel Frame Clock 22 1
VCC (+5VDC) 32 5
Data Latch Signal 35 2
VSS (GND) 19 6

Table 3: LCD connections

29

3.4.1 The Power-Up Sequence

LCD displays require special considerations upon power-up [19]. Power-on
sequencing is mainly required to protect the liquid crystal from exposure to any DC
voltage. The VCC (5 VDC) must be started first. This allows the on-board logic to become
active and starts the internal M clock which sets up an AC wave form on the display
electrodes. Even with very short intervals of exposure to VEE, without the M clock started
first, the liquid crystal will begin to break down and change state. After VCC has
stabilized, the external clock and data signals can be introduced. After the clock and data
signals are stable, VEE can be turned on. Finally, the display on/off signal can be
activated. To turn the LCD display off, the inverse sequence should be followed.

In the GuideCane implementation, the VCC is started first anyway by turning the
main power switch on. To turn the LCD display on, “panel” must be typed on the
keyboard. This will set the CM106 module in LCD mode and also turn off the signal for
the standard CRT monitor. However, if the LCD display is turned on when the
GuideCane is not connected to a CRT monitor, the user does not know if he typed the
command correctly. Therefore, it is recommended to start the “lcdon” batch file instead.
This batch file will run the “panel” command followed by a little sound sequence.

Then, switch 1 on the power board can be turned on. Afterwards, switch 2 can be
turned on and the PC output should appear on the LCD display. The delay between all
operations should be at least 50 ms. The positions of the two switches are shown in
Figure 19 and their meaning is summarized in Table 4.

Figure 19: LCD switches

Pin name Power Board Optrex LCD
VEE (24 VDC) Switch 1 7
Display On/Off Switch 2 4

Table 4: Power-on switches

30

The turn-on sequence is summarized as:

1. Turn on power
2. Type “lcdon” and wait for sound sequence
3. Turn on switch 1 (push towards inside)
4. Turn on switch 2 (push towards inside)

The turn-off sequence is summarized as:

1. Turn off switch 2 (push towards outside)
2. Turn off switch 1 (push towards outside)
3. Type “lcdoff” and wait for sound sequence
4. Turn off power (optional)

3.4.2 The Backlighting

The type of the LCD backlighting is CFL. It requires an input signal of 900 VAC at 30
kHz. To generate this high voltage signal, an inverter is implemented. The inverter is a
small PCB that requires an input of 12 VDC. The connections between the inverter output
and the LCD backlight input are shown in Table 5:

LCD CN3 Cable Color Voltage
1,2 Purple Hot (900 VAC)
3,4 - NC
5,6 White GND

Table 5: Backlight connections

Unfortunately, the high voltage signal can induce a lot of noise into the system. Most
of the GuideCane system is digital and not very sensitive to such noise. However, the
sonars analog output is very sensitive to such noise, as it is amplified by the sonar
interfaces. As a result, the sonars were not able to look further than 1.5 m with the LCD
backlight turned on. To overcome this problem, the inverter is put in an aluminum box
that shields the rest of the system from the high voltage signal. With this shielding, the
noise is reduced to such a level that its influence on the sensor electronics is negligible.

31

3.5 The Power System

3.5.1 The Power Requirements

The GuideCane is powered by rechargeable batteries. The run-time requirement for
the end user is at least 2 hours. As a comparison, the standard goal for laptop computers
is a run-time of about 4 hours. However, actual laptops, when measured at nominal usage
rates, only remain in the 2+ hour range.

The available power is mainly determined by the type and amount of batteries used.
However, software and hardware also play a key role. Parts of the robot can be shut down
by the software to save battery power, e.g. turning off the sonars when pausing. The
hardware design also has an influence on the run-time. As a conclusion, all aspects of the
power system must be considered and optimized.

The power requirements for the different parts of the robot are summarized in Table 6.
During development, there are additional power requirements because of the
development tools. The additional power requirements are shown in Table 7. The power
requirements are about 36% higher during development than for the end product.

Voltage Nominal Current Peak Current Nominal
Power

On-board PC 5 V 1.0 A 1.1 A 5.0 W
Sonars 5 V 0.5 A 2.0 A 2.5 W
Main Servo 5 V 0.5 A 0.9 A 2.5 W
Brakes 5 V 10 mA 1.0 A 0.05 W
Interface 5 V 100 mA 100 mA 0.5 W
Encoders 5 V 60 mA 90 mA 0.3 W
Pointer 5 V 10 mA 20 mA 0.05 W
Compass 5 V 30 mA 50 mA 0.15 W
Total 5 V ~ 2.2 A ~ 5.3 A ~ 11 W

Table 6: Basic power requirements

Voltage Nominal
Current

Peak Current Nominal
Power

PC Hard-disk 5 V 0.2 A 0.3 A 1.0 W
PC VGA board 5 V 0.2 A 0.2 A 1.0 W
LCD logic 5 V 0.035 A 0.040 A 0.175 W
LCD power 24 V 0.025 A 0.030 A 0.6 W
LCD backlight 12 V 0.09 A 0.1 A 1.08 W
Total 5, 12, 24 V ~ 0.8 A at 5 V ~ 1.0 A at 5 V ~ 4 W

Table 7: Additional power requirements during development

32

3.5.2 The Battery Types

As the GuideCane is a portable device, the battery selection is very important as it will
have an effect on the weight, size, and cost of the robot. A summary of the different
battery type characteristics is shown in Table 8 [14][17].

Today, nickel-cadmium (NiCd) batteries are the most widely used type due to their
availability and well-known technology. However, NiCd batteries have a mediocre energy
density and are an environmentally hazardous substance because of the cadmium.

A major improvement in battery technology is the nickel-metal hydride (NiMH)
chemistry. NiMH batteries are better than NiCd in both their energy density and their
volumetric efficiency. Furthermore, NiMH cells do not contain any hazardous substances.
As the open-circuit voltage of these batteries is the same as for NiCd batteries, they have
replaced NiCd in many applications. Another advantage of NiMH is that they do not
exhibit a memory effect as NiCd cells do. However, a NiMH battery will exhibit a voltage
depression if it is repeatedly recharged after being only partially discharged. Several such
cycles will result in a lower open-circuit voltage at full charge, so that it appears as if the
cells remember the lower voltage level. Fortunately, a few complete discharge-recharge
cycles will restore normal operation. The disadvantages of NiMH batteries are their
increased cost, their higher self-discharge rate, and their need for special charging circuits.

Lithium based (Li-Ion, Li-Metal) batteries will probably be the next generation of
batteries. Li-Ion batteries have only recently appeared on the market, while Li-Metal
batteries will hopefully soon be available. These batteries are the most efficient
rechargeable types currently known. However, they are still expensive and electronic
charger components are still hard to find.

NiCd NiMH Li-Ion Li-Metal
Voltage/cell [V] 1.2 1.2 3.6 3.0
Energy density [Wh/kg] 45 70 100 140
Volumetric efficiency [Wh/ltr] 150 230 225 300
Cost [$/Wh] 0.75 - 1.5 1.5 - 3.0 2.5 - 3.5 1.4 - 3.0
Memory effect Yes Yes / No No No
Self-discharge (%/month) 25 20 - 25 8 1 - 2
Environmental concerns Yes No No No

Table 8: Battery types

NiMH batteries were selected for the GuideCane, because they are much better than
NiCd while still at a reasonable price. Moreover, the price of NiMH batteries is likely to
become cheaper.

Even though Li-Ion batteries have a higher energy density than NiMH batteries, their
volumetric efficiency is about the same. Hence, the required volume for Li-Ion batteries is
about the same as for NiMH batteries. As Li-Ion batteries are hard to find, delicate and
more expensive for only a little gain, NiMH batteries are the better choice at this time.
When reliable Li-Metal batteries become available at a reasonable cost, they would be a
good replacement.

33

3.5.3 The NiMH Batteries

The GuideCane is currently powered by 6 HydriMax NiMH battery packs in parallel.
The specifications of the batteries are summarized in Table 9:

Criteria 1 HydriMax NiMH
Battery Pack

6 HydriMax NiMH
Battery Packs

Nominal Voltage 6.0 V 6.0 V
Cut-Off Voltage 4.5 V 4.5 V
Capacity 1.8 Ah 10.8 Ah
Max. Const. Discharge Current 750 mA 4500 mA
Max. Temp. Discharge Current 2 - 3 A 12 - 18 A
Weight 200 g 1200 g
Temperature 10° - 40° C 10° - 40° C

Table 9: Battery specifications

These batteries should be recharged with a current of 100 mA. After full recharge,
they should still be charged with 10 mA to counteract the self-discharge.

Although the minimum temperature of the batteries is 10° C, the GuideCane can still
be used at colder temperatures as long as it is turned on inside a heated building and run
for a couple of minutes. This will allow the PC and other electronic components inside the
GuideCane to become hot enough to heat the interior, including the batteries.

At high temperatures during summer, it might be necessary to incorporate a
temperature activated fan into the GuideCane to ensure that neither the batteries nor the
PC overheat.

3.5.4 The Power Circuitry

As the current required by the GuideCane electronics exceeds by far the maximum
constant discharge current of one battery pack, several battery packs have to be used in a
parallel configuration. This also increases the capacity of the power system so that the
run-time of the GuideCane is extended.

Diodes are put in series with each battery pack to prevent mutual charging and
discharging. Without these diodes, a bad battery pack could actually destroy the other
ones. Schottky diodes are used to minimize the associated power loss. These diodes have
a maximum instantaneous forward voltage of only 0.45 V.

The battery output voltage is not constant. Even though the nominal voltage of the
battery pack is 6 V, its actual output voltage varies from almost 7 V to 5.5 V. However,
the PC/104 system requires an input voltage of 5.0 V ± 5 %. Therefore, a voltage regulator
is needed between the battery packs and the GuideCane electronics.

34

As the battery output voltage is only slightly higher than the required 5 V, the best
solution is a low dropout voltage regulator. Most of these regulators are not capable of
outputting more than 1 A. Fortunately, the LT1529-5 low dropout voltage regulator from
Linear Technology became commercially available just recently [26]. This regulator has a
dropout voltage of only 0.5 V at its maximum output current of 3 A. The efficiency of this
regulator is 83% in the worst case. A power system consisting of such a regulator with n
battery packs is shown in Figure 20. Capacitor Cin actually consists of two capacitors with
the values of 0.1 µF and 3.3 µF. Capacitor Cout consists of three capacitors with the values
of 0.1 µF, 3.3 µF, and 2.2 mF.

Unfortunately, the GuideCane system requires more than 3 A, so that two of these
voltage regulators are needed. In the current implementation, the first regulator serves the
sonars while the second one serves the PC, the interface, the encoders, and the servos.
The reason for this configuration is to minimize noise on the sonars which are the most
sensitive devices in the system. The first regulator is equipped with two battery packs,
while the second one is equipped with four battery packs. The resulting run-time exceeds
3 hours.

As the final version of the GuideCane will consume about 2 A, only one voltage
regulator will be needed. In addition, with the new proposed wheel-base structure, also a
much less power consuming servo will be used.

Figure 20: Voltage regulator system

35

3.5.5 Power System Evaluation

Several tests were conducted to verify the battery specifications and to evaluate the
power circuitry. The battery tests consisted of connecting one or several fully charged
batteries to a power resistor and monitor the voltage over time. From these
measurements, the current, power, and capacity can be calculated. The data and the
voltage curve of the first test are shown in Table 12 and Figure 21 respectively. The data
and voltage curves of the second and third test are in the appendix. A summary of the test
results is shown in Table 10 and Table 11:

Test # # Batteries Load Current Run-Time Capacity
/Battery

1 1 17.0 Ω 0.3 - 0.4 A 5.1 hours 2.02 Ah
2 1 10.3 Ω 0.5 - 0.7 A 3.4 hours 1.98 Ah
3 2 10.3 Ω 0.5 - 0.7 A 7.1 hours 2.03 Ah

Table 10: Battery test results

Test # # Batteries Load Current Run-Time
4 2 3.3 Ω 1.5 A 2.25 hours
5 4 2.2 Ω 2.25 A 3 hours

Table 11: Power system test results

The first two tests consisted of applying a fully charged battery directly to two
different loads. These tests confirm the specified capacity of the batteries. A possible
reason for measuring a slightly higher capacity is that the load was not constant during the
test but was increased because of the increase of the resistor temperature.

For the third test, two batteries were put in parallel. Each battery had a Schottky diode
in series to avoid mutual discharging as explained in section 3.5.4. Again, our test yields
the expected results.

The last two tests included the full board with the voltage regulator yielding a steady
5V output. The measurement of the run-time was stopped when the output voltage
dropped below 4.85 V.

36

Time ∆∆ Time Voltage [V] Current [A] Power [W] ∆∆ [Ah]
2:35 0:00 6.87 0.404 2.776
2:36 0:01 6.81 0.401 2.728 0.007
2:37 0:02 6.78 0.399 2.704 0.007
2:38 0:03 6.75 0.397 2.680 0.007
2:39 0:04 6.73 0.396 2.664 0.007
2:40 0:05 6.71 0.395 2.648 0.007
2:47 0:12 6.58 0.387 2.547 0.046
2:53 0:18 6.49 0.382 2.478 0.038
3:00 0:25 6.42 0.378 2.424 0.044
3:05 0:30 6.38 0.375 2.394 0.031
3:10 0:35 6.37 0.375 2.387 0.031
3:15 0:40 6.36 0.374 2.379 0.031
3:20 0:45 6.35 0.374 2.372 0.031
3:30 0:55 6.34 0.373 2.364 0.062
3:45 1:10 6.33 0.372 2.357 0.093
4:00 1:25 6.32 0.372 2.350 0.093
4:15 1:40 6.31 0.371 2.342 0.093
4:34 1:59 6.29 0.370 2.327 0.117
5:05 2:30 6.25 0.368 2.298 0.191
5:16 2:41 6.23 0.366 2.283 0.067
5:32 2:57 6.20 0.365 2.261 0.097
5:45 3:10 6.16 0.362 2.232 0.079
6:00 3:25 6.12 0.360 2.203 0.090
6:12 3:37 6.07 0.357 2.167 0.072
6:16 3:41 6.05 0.356 2.153 0.024
6:30 3:55 6.00 0.353 2.118 0.083
7:00 4:25 5.81 0.342 1.986 0.174
7:18 4:43 5.63 0.331 1.865 0.274
7:28 4:53 5.45 0.321 1.747 0.054
7:39 5:04 5.10 0.300 1.530 0.057
7:40 5:05 5.04 0.296 1.494 0.005
7:41 5:06 4.59 0.270 1.239 0.005
7:42 5:07 4.00 0.235 0.941 0.004
7:43 5:08 3.96 0.233 0.922 0.004
7:44 no charge 5.38 V 2.024

Table 12: Single battery test data

37

Battery Test (7/2/96)

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0:00 1:00 2:00 3:00 4:00 5:00 6:00

Time [h:min]

V
o

lt
ag

e
[V

]

Figure 21: Single battery voltage curve

38

4. THE SENSORS AND ACTUATORS

4.1 The Ultrasonic Sensors

4.1.1 Properties of Sonars

To detect obstacles and measure their position relative to the GuideCane, the robot is
currently equipped with ten Polaroid Ultrasonic sensors, or in short sonars [30]. The
principle of ultrasonic sensing is based on emitting a short high frequency signal (~40
kHz) and measuring the time of flight (TOF) it takes for the signal to propagate from the
sensor to an object and back. As the speed of travel is known, the distance to the object
can be calculated. The change of speed dependent on the temperature is 7% from 0° to
40°C.

The speed of the ultrasonic wave at 20°C is:

c = 343.2 m/s = 1125 ft/s

Hence, the distance to an object based on the time of flight is:

d
TOF c

=
*

2

Therefore, a time of flight of 1 ms corresponds to 34 cm of flight distance, or 17 cm of
distance to the corresponding object. The sonar accuracy is about 1%. The standard
sensing range is 40 cm to 11 m. By asserting the BINH signal , the minimum sensing
range can be decreased to 10 cm for the best sonar devices, and to 15 cm for most other
devices. The minimum sensing range is set to 10 cm for the eight forward facing sonars,
and to 15 cm for the two side facing sonars.

Although sonars provide good range data, they offer only poor directionality. An
opening angle of 20-30° is typical for the Polaroid sensor. Another problem of sonars is
specular reflections from smooth surfaces. This is particularly a problem if the robot has
to perform wall-following. A method to reduce the effects of specular reflections on the
robot's wall-following behavior is explained in section 7.4.

The Polaroid sonars come with an electronic interface that generates the high voltage
necessary to emit the powerful but short sound wave. The current consumption of each
electronic interface is about 50 mA. For the short duration of 0.5 ms during the pulse
emission, the current peaks up to 2 A. To reduce the constraints on the power system, a
high value capacitor is added to the power lines of each interface.

39

4.1.2 EERUF - Sonar Control

The sonars are controlled by the EERUF (Error Eliminating Rapid Ultrasonic Firing)
method to take maximum advantage of their capabilities [6]. EERUF allows ultrasonic
sensors to fire at rates that are five to ten times faster than those in conventional
applications. The problem of crosstalk, a result of the fast firing rate, is practically4

eliminated by the crosstalk detection algorithm in EERUF. The faster firing rate improves
the reliability and robustness of the mobile robot obstacle avoidance and is necessary for
safe travel at higher speed.

The EERUF method is explained in detail in [6]. In short, EERUF is based on the
principle of comparison of consecutive readings, but, in addition, employs alternating
delays before firing each sensor.

To give the reader a small insight into EERUF, an example of the interaction of two
sonars is explained in the following section. Figure 22 shows the environment for this
example.

Figure 22: EERUF example

4 Crosstalk is not detected by EERUF in cases of very special and unlikely object arrangements that

result in a sonar receiving specific crosstalk from more than one sonar.

40

In the ideal case, only sonar #1 would detect the obstacle at a distance of 8 m
corresponding to a time of flight of about 50 ms. Unfortunately, the ultrasonic wave
emitted by sonar #1 could not only be reflected back to sonar #1 but also to sonar #2.
This phenomenon is called crosstalk. If the sonars were fired once every 100 ms based on
a conventional sonar system, this environment could lead to undetected crosstalk.

Let's assume that we had a system of four sonars, with sonar #2 firing 25 ms after
sonar #1. In a situation without crosstalk, the timing diagram would look like in Figure 23.
However, if crosstalk occurred, the reflected wave would hit both sonars #1 and #2 at
about the same time. So, sonar #2 would indicate that there is an obstacle in its direction
at about 4 m. As a result, the robot would try to avoid this virtual obstacle. It is also
important to note that the comparison of consecutive readings does not help to eliminate
these crosstalk readings.

Figure 23: Conventional system without crosstalk

Figure 24: Conventional system with crosstalk

The problem of crosstalk is overcome by EERUF by applying alternating time delays
before firing a sonar. For example, the time delays specified by [6] for sonar #1 are 24 and
18 ms. For sonar #2, the time delays are 49 and 37 ms. Without crosstalk, the situation is
similar to the conventional system. However, with crosstalk, EERUF is able to detect the
problem. The time diagram for our example is shown in Figure 25. Sonar #2 still returns
the crosstalk readings, but due to the alternating time delays, they are not identical
anymore. If the situation was static, sonar #2 would return 25 ms, 31 ms, 25 ms, 31 ms
and so on. As the difference of the consecutive readings is more than 1 ms, the limit set
by this specific EERUF mode, the readings of sonar #2 will be rejected as crosstalk.

41

Figure 25: EERUF system with crosstalk

For a better performance of the robot, the crosstalk readings should not simply be
discarded. In our example, when sonar #2 returns a value of 31 ms after a value of 25 ms,
the reading indicates that there is nothing up until a distance corresponding to 31 ms. If
sonar #2 returns a value of 25 ms after a value of 31 ms, it indicates that there is nothing
up until a distance corresponding to 25 ms.

Therefore, even though these readings are rejected as crosstalk, the sensor data can
still be used to decrement certainty values in the local map as explained in section 6.3.2.
As a result, there will be less cells with incorrect high certainty values. This is especially
useful in environments with moving objects, e.g. other people.

42

4.2 The Steering Angle Measurement

The GuideCane needs to know its current steering angle to correctly update the map
based on the sonar readings. It also needs to know this value to determine the correct new
servo output.

A simple solution would be to assume that the actual steering angle is equal to the
desired steering angle. However, after every large change in the desired steering angle, this
assumption would not hold until the servo reached the new desired angle. Consequently,
readings from the sonars would be placed into wrong map locations.

There are several possibilities to measure the actual steering angle. The currently
implemented method uses the potentiometer inside the servo. As the servo shaft is rigidly
linked to the wheel-base, the servo angle is identical to the wheel-base angle. This method
is very simple, as the servo potentiometer can be connected to the HC11 analog input
port.

Another possibility would have been to add a potentiometer to the main axis. This
method has several inconveniences. Firstly, there is not much free space on the steering
axis where the potentiometer could be fixed. Secondly, the most accessible place to put
the potentiometer is rather dirty, which could cause wrong outputs unless it is put inside a
sealed housing. Finally, this method requires additional parts and an installation which is
more delicate than the first method.

A third possibility would have been to add a digital encoder to the main axis.
However, this solution is the most expensive of all three solutions. It would also require
more space and a more delicate installation than the first method. Its main advantage
would be the encoder's precision. However, the precision of the steering angle
measurement is not essential.

The interior of the currently used servo is shown in Figure 26. The internal
potentiometer of the servo outputs voltages between 0.81 V and 1.63 V for angles
between 50° and -50° respectively. The output signal (white wire) is connected to the
analog input port of the main HC11. With the 8-bit resolution of the HC11 A/D converter,
the precision of the steering angle measurement is 2.3°.

To increase the precision of the analog-digital conversion to 0.39°, an amplifier could
be added between the potentiometer and the HC11. This electronic circuit would map the
range of 0.81 V to 1.63 V to the range of 0 to 5 V, the full input range of the HC11 A/D
converter. This mapping is not considered necessary as the current servo position
precision is good enough.

43

Figure 26: Servo interior

4.3 The Encoders

The GuideCane is equipped with encoders for the purpose of odometry. The first
wheel-base was equipped with the RG encoders from Photocraft. These encoders had the
advantage of internal ball bearings which simplified the wheel fixation design. However, it
turned out that the encoders were too heavy, resulting in a too high moment of inertia of
the wheel-base. Although the encoders weigh only 400 grams, their placement at the
wheel-base extremities resulted in a high moment of inertia, which would have required a
very strong and power consuming servo.

To reduce this moment of inertia, the new wheel-base is equipped with the light
HEDS-5540-A06 encoders from Hewlett Packard. The resolution of these encoders is 500
pulses per revolution. Using full quadrature encoding, the resulting resolution becomes
2000 pulses per revolution. With wheels of a diameter of 4.5 inches, each pulse
corresponds to a wheel advancement of just 0.18 mm.

44

4.4 The Servos

The wheel-base is rotated by a servo motor5. Servo motors have the advantage of
being very easy to use. They usually consist of a DC-motor, a gear reduction, a
potentiometer, and an electronic control board. The servo input is a pulse-width
modulated (PWM) signal. The width of the PWM signal [1ms, 2ms] specifies the desired
output angle [-60°, 60°] through a linear mapping. The control board takes care of the
motor control.

The GuideCane is currently equipped with three Futaba servos, one for the main axis
and two for the brakes. Futaba servos are high quality and better documented than other
servos.

For the main servo, the first tests were done with the S125 model which has an output
torque of 129.3 oz-in. This servo has a high gear reduction resulting in a relatively small
speed of 97°/s. This speed was too slow for fast maneuvers. And because of the high gear
reduction, the servo axis got easily destroyed by mechanical shocks applied to the wheels.

The currently used servo is the S3801 model which has a higher output torque of 200
oz-in. This servo has also a smaller gear reduction resulting in a higher speed of 272°/s.
Because this servo is stronger and has a smaller gear reduction, it supports much higher
shocks. However, this servo is bigger, heavier, and consumes more power.

With the improved wheel-base structure, as proposed in section 2.2.2, a much weaker,
smaller, lighter, cheaper, and less power consuming servo could be used.

As already mentioned, a servo has its own control board, usually consisting of an
analog PD controller. This is a very nice feature, as one can simply specify a desired
output angle and it will take care of the closed-loop control. However, the control
parameters, which can not be changed, are adjusted for small loads. With the current
wheel-base, the moment of inertia is rather high. As a result, if a step input was applied to
the servo, its output would overshoot and oscillate in a very unsatisfactory way. The
source of the problem is that the servo would accelerate too much, trying to achieve a
performance that is not feasible.

Fortunately, this problem can be overcome with the low-level software. The solution
is to slow the servo down by giving it a maximum velocity limit. An example is shown in
Figure 27. Without a velocity limit, a new desired input ϕ is given to the servo every
sampling time ti of the PC. This is basically a succession of step inputs. With the heavy
load of the wheel-base, the servo overshoots and oscillates.

A velocity limit can be implemented by providing a trapezoidal input signal to the
servo, where the slope of the signal corresponds to the maximum velocity. Transforming
the step input signal to a trapezoidal signal is performed by the HC11. With this
transformation, the servo neither overshoots nor oscillates.

5 A hobby servo motor, not a DC servo motor with a linear velocity-torque characteristic.

45

Figure 27: Servo input: a) without velocity limit, b) with velocity limit

However, another problem appeared because of the discrete nature of the histogram
grid. In the current implementation, the histogram resolution α is 5°. When the robot is
going down a hallway, the obstacle avoidance algorithm often oscillates between two
values separated by the histogram resolution. As a result, the servo heavily oscillates
between these two values resulting in a very jerky behavior.

This problem could be overcome by choosing a slower servo velocity limit. Another
possibility would have been to filter the obstacle avoidance output. Both methods
improve the hallway following behavior, but they slow down the robot's reaction to an
obstacle in its way. Both methods would result in a trade-off between trajectory
smoothness and obstacle avoidance performance.

A better method is to have a servo velocity limit that is a function of the difference
between the actual orientation θ and the desired new orientation ϕn as shown in Figure 28.
With this method, the robot reacts fast to an obstacle avoidance maneuver, but still
provides a smooth trajectory.

Figure 28: Variable main servo speed limit

46

4.5 The Input Device

The GuideCane needs an input device so that the user can indicate the desired
direction of travel. This direction can be understood as either relative to the orientation of
the robot or relative to the orientation of the cane. The input device should also allow the
user to indicate the desire for special behaviors, like going through a narrow door.

The input device is connected to the serial port of the PC. As most input devices are
compatible with the PC serial port, the user will be able to use his preferred input device
by simply connecting it to the serial port.

4.5.1 The Pointer

The currently implemented input device consists of a ProPoint pointer made by
Interlink Electronics. This pointer consists of a mouse button which can be pressed in
any direction. The mouse button is sensitive to the applied force. The pointer is also
equipped with two additional buttons.

The mouse button is used to indicate the desired direction of travel. In the current
implementation, this direction is discretized in either four or eight directions. The more
discrete directions are available, the harder it is to use the mouse button correctly.

The two buttons are not used yet. As mentioned above, they could be used to select
specific behaviors. If more than two modes were necessary, these buttons could be
combined with the mouse button to offer more input possibilities.

4.5.2 Other Input Devices

If the user did not like the pointer, he could easily replace it with another serial port
compatible input device. An overview of existing device types is shown in Table 13.

Name Directions Buttons
ProPoint Pointer Continuous 2
Trackball Continuous 2-3
Touchpad Continuous 2-4
Joystick Continuous 2-4
Game Controller 8 6
Keypad - 4-32

Table 13: Input device types

47

5. The HC11 Software

5.1 The Main HC11 Software

The main HC11 takes care of most of the communications, samples up to eight analog
inputs, resets other devices, and generates the PWM signals for the servos. As these tasks
have different time constraints, the software is organized in a multi-tasking architecture.
The tasks running in parallel are summarized in Table 14:

Task Type Time constraints
1 Execute command

as requested by
PC

Regular Program Low

2 Generation of
PWM signals

Software interrupt: OC1
Hardware interrupts: OC2 - OC5

Every 20 ms

3 Continuous A/D
conversions

Software interrupt: OC2 Every ~20 ms
(when PA6 goes high)

Table 14: Main HC11 tasks

In the current implementation, the regular program is interrupted about every 20 ms
by tasks #2 and #3. Because the interrupt service routines are small, most of the
computing power is reserved for the regular program.

Currently, only a small amount of the main HC11's computing power is used, so that
there is enough computing power and program space left for future extensions.

5.1.1 Task #1 - Communication and Execution

The regular program spends most of its time waiting for a new command byte from
the PC. When it receives a new command, it will decode it according to Table 2 (page 22)
and execute it. If the command is for the servos, the HC11 will put the corresponding
value in an internal register, which will be read later by the servo interrupt routine (task
#2).

If the PC needs to know the value of an analog input, the HC11 can simply read the
value from the last A/D conversion and send it back to the PC trough handshaking as
explained in section 3.3.2.

If the command is for the HC11 slaves, the main HC11 will send it to them trough the
SPI line as explained in section 3.3.3.

48

5.1.2 Task #2 - Generation of the PWM Signals

Task #2 generates the PWM signals for up to 4 servos. Servos are typically controlled
by a PWM signal that repeats every 20-30 ms with a variable pulse width ranging from 1
to 2 ms in duration:

Figure 29: Servo input signal (PWM)

The generation of these signals can be implemented by two different methods. In the
first method, the main HC11 generates the PWM signals with a 32.77 ms period. Even
though this period is higher than the typical period, the servos still work properly. The
reason for the choice of this particular period is that the internal timer of the HC11
overflows after 32.77 ms. Therefore, the PWM signals can be generated based on
hardware interrupts only, without requiring any software interrupt servicing. This is very
efficient, as it takes no computation power of the HC11. However, if a new command
with a smaller pulse width is given to the HC11 in the time span between the falling edges
of the new and old command, the PWM signal will stay high for an entire period. As the
critical time span is rather small, this problem occurs rarely. If it happens, the effect is
small as the momentarily wrong command is filtered by the inertia of the motor and
wheel-base.

In the second method, the PWM signals are generated with the typical period of 20
ms. This method eliminates the potential problem of the first method. It is also
advantageous over the first method if the sampling rate of the GuideCane software is
smaller than 32.77 ms. As a disadvantage, this method requires software interrupt
servicing, and therefore takes some computation power of the HC11. As the interrupt
service routine is small and the main HC11 has more than enough computation power for
its other tasks, the second method was implemented as it is safer and allows higher
sampling rates.

This second method can be implemented with the HC11 output compare functions.
These real-time interrupt functions allow one to efficiently implement up to four PWM
signals. In the current GuideCane configuration, one PWM signal is used for the main
servo, and two are used for the brake servos. So, another servo can easily be added for
future extensions. A regular way of implementation and a better version are shown in
Figure 30.

In the regular method, the OC1 (output compare 1) hardware interrupt is used to
simultaneously generate the rising edges of the three PWM signals every 20 ms. The
OC2-OC5 hardware interrupts are used for the falling edges of the four respective PWM
signals.

49

In the improved method, the OC1 hardware interrupt is used to simultaneously
generate the falling edges of the three PWM signals every 20 ms. The OC2-OC5 hardware
interrupts are used for the rising edges of the four respective PWM signals.

With both methods, only the OC1 interrupt is serviced. This interrupt service routine
calculates the output compare timer values for the next events and writes them to the
corresponding registers. For the regular method, as shown in Figure 30, these values must
be updated no later than 1 ms after the OC1 interrupt occurred. In the current
implementation, 1 ms is far enough time. However, if the main HC11 has to take care of
more parallel tasks in future extensions, this time limit could be a problem. With the
improved method, the time limit is 18 ms, so that there should be no problem even if
several more tasks were added. For this reason, the improved method was implemented.

a) b)

Figure 30: Generation of PWM signals: a) regular method, b) better method

5.1.3 Task #3 - Continuous A/D Conversions

To measure the steering angle orientation, the HC11 reads the analog value of the
servo potentiometer. However, this signal is invalid from the falling edge of the main
servo input signal for a duration that is a function of the applied torque. A safe time to get
a valid reading is to sample this voltage at the rising edge of the main servo input signal.
As this edge is generated by the OC2 hardware interrupt, the OC2 interrupt service
routine is used to sample the signal at that specific time.

In the current implementation, the potentiometer signal is actually converted four
consecutive times. Once the A/D conversion is started by the OC2 interrupt service
routine, the HC11 hardware automatically makes these four conversions in a time interval
of only 64 µs.

 The results of these conversions are stored in registers which can be read by task #1.
These four measurements are averaged before being sent to the PC.

5.2 The HC11 Slave EERUF Implementation

50

5.2.1 The Multitasking Architecture

For reasons of limited input/output lines and speed, each HC11 slave takes care of up
to eight sonars. Each HC11 slave has to accomplish several tasks at different rates and
with different time constraints. To implement this efficiently, the HC11 slave software is
also organized in a multi-tasking architecture. The four different tasks with their properties
are summarized in Table 15:

Task Type Time constraints
1 Compute TOF and

write into FIFO
Regular program Low

2 Generate fire signals
and set time for next
BINH interrupt

Software interrupt: OC4 13 times in 200 ms
according to EERUF
schedule

3 Check echo signals Software interrupt: OC5 Every 50 µs
4 Generate BINH signals Hardware interrupt: OC1 Exactly 0.6 ms after

corresponding fire signal

Table 15: HC11 slave tasks

The regular program (task #1) is constantly interrupted by the two software interrupts
(tasks #2 and #3) which generate the fire signals and check the echo signals. The fourth
task (task #4) is supported by the HC11 hardware so that it does not require interrupt
servicing. However, the times at which the BINH signals are changed are set during the
interrupt servicing of task #2. Tasks #2 and #3 communicate with task #1 through an
internal FIFO buffer and several global variables.

5.2.2 Task #1 - Communications and Treatment of Buffer

Task #1 reads the internal FIFO buffer containing the data from tasks #2 and #3. It
analyzes this data and computes the time of flight (TOF). This task also takes care of all
the other not time-critical tasks, e.g. the SPI communication with the main HC11.

 The time constraints of task #1 are low. However, if it is not executed often enough,
the internal buffer may overflow. As the timing of task #2 is fixed by the EERUF
schedule and task #4 is only a hardware interrupt, only the timing of task #3 can be
changed to influence the time allocation of task #1. Basically, the higher the execution rate
of task #3, the better the sonar resolution, but also the less time is allocated to task #1, and
hence the higher the risk of an internal buffer overflow. However, tests have shown that
task #3 can even be executed every 25 µs without problems. The algorithm of task #1 is
summarized as following:

1. New request from main HC11? If yes execute, e.g. start sonars, stop sonars,
change EERUF mode, fire single sonar.

51

2. Check internal buffer. If empty go back to step 1.
3. Read next byte from internal buffer.
4. If the byte is equal to No_Echo, the corresponding sonar(s) has not received back

an echo. Write index and TOF equal to zero into FIFO. Go back to step 1.
5. Otherwise, compute the TOF for corresponding sonar(s). Write index and TOF

into FIFO.
6. Go back to step 1.

5.2.3 Task #2 - The Generation of the Fire Signals

Task #2 is responsible for generating the fire signals and setting the time for the next
BINH interrupt. The fire signals must be generated as specified by the EERUF time
schedule. This task is executed 13 times in an interval of 200 ms. Its algorithm is the
following:

1. If a fire signal is disactivated, check if the corresponding echo was received. If not,
write the No_Echo byte and the index of the corresponding sonar(s) into the
internal buffer.

2. Output new fire signals and save time into array p_list_fire[index].
3. Set time and output for next BINH signal.
4. Set time for next fire signal event.
5. Increment EERUF table pointers.
6. Execute task #3.

5.2.4 Task #3 - Checking for Echoes

Task #3 is the most time intensive as it checks for new echoes every 50 µs. The more
often this task is executed, the better the sonar resolution. Hence, it is important to make
this routine as short and fast as possible. For this reason, task #3 only checks for new
echoes, but neither identifies the sonar(s) nor computes the TOF. It just saves the current
time and a representative byte into the internal buffer. The representative byte contains
bits set to one for sonars with new echoes. This data is then treated by task #1. The
algorithm of the interrupt service routine is as follows:

1. Read echoes.
2. Check for new echoes with: ¬(previous_echoes) ∧ (current_echoes).
3. If the result is not zero, save it and the current time in internal buffer.
4. Save current echoes as previous_echoes.
5. Set time for next interrupt.

5.2.5 Task #4 - The Generation of the BINH Signals

52

Task #4 is the most time constrained as the BINH signal must be activated exactly 0.6
ms after the fire signal. This can be done by using the hardware interrupt OC1 without
any interrupt servicing. When the HC11 timer becomes identical to the time set in step 3
of task #2, the OC1 interrupt will automatically output the four bits defined in the same
step. This assures exact activation of the BINH signals independent of other interrupts.

5.2.6 The Fire Signal Table

The EERUF fire schedule in [6] is tailored for a sonar system consisting of 12 sonars.
It is reproduced in Table 16. Each sonar is fired once every 100 ms interval. The difference
between two consecutive sonar echoes must be smaller than 1 ms to be accepted as a
valid reading. These fire signals are generated by task #2 according to the EERUF
schedule. For an efficient software implementation of task #2, the EERUF time schedule
is stored in a look-up table. The remaining part of this section develops the look-up table
for the first HC11 slave, which uses the schedule for the first eight sonars.

Sonar 1 2 3 4 5 6 7 8 9 10 11 12
Tfire,a [ms] 24 49 74 99 24 49 74 99 24 49 74 99
Tfire,b [ms] 18 37 56 75 20 39 58 77 22 41 60 79

Table 16: EERUF firing schedule

For the second HC11 slave, the schedule for the sonars 9-12 and 1-4 is currently
implemented for the sonars 9-16. The selection of repeating the EERUF schedule for the
sonars 1-4 is arbitrary and has no effect on the current GuideCane performance because
the sonars 13-16 are not connected. If the GuideCane got equipped with more than 12
sonars in future extensions, it might be necessary to develop a new EERUF schedule for
16 sonars to make sure that cross-talk gets rejected. However, if it is very unlikely for a
pair of sonars to receive their respective signals, the fire schedule of these sonars can be
the same. The sonars 9 and 10 of the current GuideCane are an example of such a pair. By
placing the sonars carefully, the existing EERUF schedule can likely be kept.

The sonar fire signal has to be held high as long as the sensor should be listening to an
echo. For maximum flexibility, the fire signal is held high for longer than 58 ms which,
theoretically, allows the sonars to detect an obstacle up to at least 10 m. In practice, the
electronic environment is too noisy for the sonars to detect obstacles reliably at this
distance. However, choosing a large look-ahead gives us maximum flexibility. The PC
software can easily reduce the look-ahead, but it can not extend it. For more flexibility
during the HC11 software design process, we will start out with an even larger look-ahead
of 72.6 ms.

As each of the eight sonars fires once in 100 ms, we would expect to need 16
interrupts in the same time interval, eight for asserting the fire signals and eight for

53

deasserting them. However, during every other period, two sonars are activated and
disactivated together as shown in the upper part of Table 17. This reduces the number of
interrupts to 12 in a time interval of 100 ms.

Event [0.1 ms] Fire Stop
240 1, 5
966 1, 5
490 2, 6

1216 2, 6
740 3, 7

1466 3, 7
990 4, 8

1716 4, 8
1180 1
1200 5
1906 1
1926 5
1370 2
1390 6
2096 2
2116 6
1560 3
1580 7
2286 3
2306 7
1750 4
1770 8
2476 4
2496 8
2240 1, 5

Table 17: Fire signals

To generate these time-critical fire signals, the HC11 uses its timer interrupt OC4. The
HC11 timer is prescaled by a factor of 16 to give it a 8 µs resolution. The timer has to
interrupt the HC11 whenever a fire signal has to change its state. After each interrupt, a
new interrupt time has to be set for the next change. Therefore, what matters is the
difference ∆ in 8 µs steps between consecutive time events. After ordering the fire signal
events, we get the information shown in Table 18:

54

Event [0.1 ms] Event [8 µµs] ∆∆ [8 µµs] Fire Stop
240 3000 3125 1, 5
490 6125 3125 2, 6
740 9250 2825 3, 7
966 12075 300 1, 5
990 12375 2375 4, 8
1180 14750 250 1
1200 15000 200 5
1216 15200 1925 2, 6
1370 17125 250 2
1390 17375 950 6
1466 18325 1175 3, 7
1560 19500 250 3
1580 19750 1700 7
1716 21450 425 4, 8
1750 21875 250 4
1770 22125 1700 8
1906 23825 250 1
1926 24075 2125 5
2096 26200 250 2
2116 26450 1550 6
2240 28000 575 1, 5
2286 28575 250 3
2306 28825 2125 7
2476 30950 250 4
2496 31200 8

Table 18: Ordered fire signals

Now, we can reduce the number of events even further by combining some of the
stop events with others. When we built our first fire signal schedule, we were using a
look-ahead of 72.6 ms which is much longer than the required look-ahead of 58 ms.
Therefore, we can combine a stop event with another one that occurs not earlier than 14.6
ms. This allows us to reduce the number of events in a time interval of 200 ms to only 13
as shown in Table 19. This table also contains the data for the generation of the BINH
signals. The data of the last 5 columns is stored in the form of look-up lists in the HC11
memory.

55

Event
[0.1 ms]

Event
[8 µµs]

∆∆
[8 µµs]

Fire Stop ∆∆BINH Byte BINH

240 3000 3125 1, 5 3, 4, 7, 8 BINH 0000|0000
490 6125 3125 2, 6 BINH 0101|0000
740 9250 3125 3, 7 BINH 1010|0000
990 12375 2375 4, 8 1, 5 BINH 1111|0000

1180 14750 250 1 BINH 1100|0000
1200 15000 2125 5 2,6 BINH 0000|0000
1370 17125 250 2 BINH 0001|0000
1390 17375 2125 6 3,7 BINH 0101|0000
1560 19500 250 3 BINH 0110|0000
1580 19750 2125 7 4,8 BINH 1010|0000
1750 21875 250 4 BINH 1011|0000
1770 22125 2500 8 BINH 1111|0000
1970 24625 3375 1, 2, 5, 6 0 0000|0000
2240 28000 1, 5 BINH 0000|0000

Table 19: Look-up table for the first HC11 slave

The data for the second HC11 slave is shown in Table 20:

Event
[0.1 ms]

Event
[8 µµs]

∆∆
[8 µµs]

Fire Stop ∆∆BINH Byte BINH

240 3000 3125 9,13 11,12,15,16 BINH 0000|0000
490 6125 3125 10,14 BINH 0101|0000
740 9250 3125 11,15 BINH 1010|0000
990 12375 2375 12,16 9,13 BINH 1111|0000
1180 14750 500 13 BINH 0011|0000
1220 15250 1875 9 10,14 BINH 0000|0000
1370 17125 500 14 BINH 0100|0000
1410 17625 1875 10 11,15 BINH 0101|0000
1560 19500 500 15 BINH 1001|0000
1600 20000 1875 11 12,16 BINH 1010|0000
1750 21875 500 16 BINH 1110|0000
1790 22375 2875 12 BINH 1111|0000
2020 25250 2750 9,10,13,14 0 0000|0000
2240 28000 9,13 BINH 0000|0000

Table 20: Look-up table for the second HC11 slave

56

6. The PC Software

6.1 The Main Loop

The PC software is written in C and runs under DOS. The high-level algorithm of the
main loop is shown in the following list. For good robot performance, it is important that
the sampling period of the main loop is as low as possible. The sampling period should
not exceed 60 ms to avoid large oscillations in the robot's trajectory. Specific parts of the
algorithm are explained in more detail in the following sections.

1. Read values from HCTL decoders and update odometry.
2. Read value from potentiometer.
3. Plot robot position on screen (optional).
4. Read input device. If new input, discretize it into 4 or 8 directions and update the

desired direction.
5. Read sonar data from FIFO and update histogram grid accordingly.
6. Build polar histograms.
7. Determine new steering direction.
8. Set new servo direction.
9. Output histograms and other data (e.g. sampling time) on screen (optional).

6.2 Odometry

The odometry equations for the GuideCane are the same as for a differential drive
mobile robot. However, as the GuideCane wheels are unpowered, there is less risk of
wheel slippage. Hence, the amount of non-systematic odometry errors should be smaller.
Based on the encoder outputs, the GuideCane can perform dead reckoning by using
simple geometric equations to compute its momentary position relative to a known
starting point. For completeness, the well-known equations for odometry are repeated
below [13][21].

First we need to determine the conversion factors that translate the encoder pulses
into linear wheel displacements:

Right wheel: c
d
rr

r

r

= π *

Left wheel: c
d
rl

l

l

= π *

57

where: d = nominal wheel diameter [mm]
r = encoder resolution [pulses per revolution]

At each sampling interval i, we can compute the incremental travel distance for both
wheels based on the encoder pulse increments Nr and Nl:

()∆U c N Nr i r r i r i, , ,*= − − −1

()∆U c N Nl i l l i l i, , ,*= − −1

The incremental linear displacement ∆Ui of the robot’s center-point C:

∆
∆ ∆

U
U U

i
r i l i=

+, ,

2

The incremental change of orientation ∆θi:

∆
∆ ∆

θi
r i l iU U

b
=

−, ,

where b is the wheel-base of the vehicle, ideally measured as the distance between the two
contact points between the wheels and the floor.

The robot’s new relative orientation can be computed in a recursive way:

θ θ θi i i= +−1 ∆

This orientation could also by computed in an absolute way:

() ()
θ θi

r r i r l l i lc N N c N N

b
= −

− + −
0

0 0* *, , , ,

If the encoders are reset at t = 0:

θ θi
r r i l l ic N c N

b
= −

+
0

* *, ,

And the relative position of the center-point is:

x x Ui i i i= +−1 ∆ *cosθ
y y Ui i i i= −−1 ∆ * sinθ

58

6.3 Local Map Building

To achieve a good obstacle avoidance performance, the GuideCane needs to build a
local map of the surrounding obstacles based on the input from its sonars. This allows the
robot to take into account not only the current sonar readings but also previous readings.
In other terms, this map represents a world model which allows the GuideCane to be
more than just a simple reflex agent.

6.3.1 The Map Representation

The map is represented by a two-dimensional array, called a histogram grid, similar
to the certainty grid [27] and occupancy grid [15]. Each cell contains a certainty value
(CV) that indicates the measure of confidence that an obstacle exists within the cell area.
This representation is especially suited to sensor fusion, as well as the accommodation of
inaccurate sensor data such as range measurements from ultrasonic sensors.

In the current implementation, the dimensions of the map are 18 m by 18 m. The
dimensions of a cell are 10 cm by 10 cm. Therefore, the map is represented by an array of
180 by 180 bytes. The origin of the x-y system is at the center of the map. To simplify the
screen output for development purposes, the reference system is selected as shown in
Figure 31.

Figure 31: Reference system

59

6.3.2 The Map Building - HIMM

Histogramic In-Motion Mapping (HIMM) is a real-time map building method for a
mobile robot in motion [7]. Contrary to other methods, the histogram method increments
only one cell in the histogram grid for each range reading. For the sonars, the incremented
cell is the one that corresponds to the measured distance and lies on the acoustic axis of
the sensor. The histogram method also decreases the certainty value of the cells between
the robot and the incremented cell. While this approach may seem to be an
oversimplification, a probability distribution is actually obtained by continuously and
rapidly sampling each sensor while the vehicle is moving. This results in a histogramic
probability distribution.

In the current implementation, the certainty value range is between 0 and 63. The
increment I+ of a cell is +20 for the front-facing sonars, and +50 for the side-facing
sonars. This parameter is higher for the side-facing sonars to achieve a better wall-
following behavior. Because this parameter affects only cells on the robot's side, a false
reading would not have a big influence on the obstacle avoidance behavior. The
decrement I - is set to -10. To increase the signal/noise ratio, the obstacle avoidance
response of the VFH algorithm is proportional to the square of a certainty value.

To compensate for the adverse scattering effects caused by in-motion sampling, a
growth rate operator (GRO) is added. A cell is incremented faster by the GRO if the
immediate neighbors hold high CV’s according to the following equation:

cv cv I

cv cv cv cv cv cv cv cv
x y x y

x y x y x y x y x y x y x y x y

, ,

, , , , , , , ,

= + +

+ + + + + + +

+

− − − − + − + + − + + +1 1 1 1 1 1 1 1 1 1 1 1

2

In short, HIMM produces high CV’s for cells that correspond to obstacles and keeps
low CV’s for cells that were incremented due to misreadings or moving objects.
Moreover, any range reading is immediately represented in the map and has immediate
influence on the concurrent obstacle avoidance algorithm.

60

6.3.3 The Scrolling

As the size of the local map is limited, it is necessary to incorporate scrolling.
However, the scrolling algorithm has to be efficient in order not to slow down the
sampling rate of the robot. Continuous scrolling, e.g. to scroll the whole map by one
pixel whenever the robot's position changes from one pixel to another, would be a much
too time consuming process. Discrete scrolling is much more time efficient which is the
reason why this method was implemented on the GuideCane.

In the current implementation, scrolling occurs when the robot passes one of the
virtual borders shown in Figure 32. These borders are located half-way between the center
of the map and the map border at x = ± 4.5 m and at y = ± 4.5 m. Whenever the odometry
values x or y are outside this range, the map is moved by 4.5 m. Actually, only ¾ of the
map are moved and the other ¼ is set to zero.

As the look-ahead of the sonars is well below 4.5 m, this method performs well and is
very efficient.

Figure 32: Virtual scrolling borders

61

7. Obstacle Avoidance

The main task of the GuideCane is to steer around obstacles and proceed toward the
original target position or direction. The performance of the GuideCane is directly related
to the performance of its obstacle avoidance algorithm.

First, the original Vector Field Histogram (VFH) method was implemented. This
method was then successively improved resulting in the VFH+ algorithm. The final
algorithm with a less local behavior resulted in the VFH* method.

7.1 Original VFH

7.1.1 The VFH Algorithm

The original VFH obstacle avoidance algorithm is described in detail in [9]. This
powerful and efficient method uses the histogram grid as its world model. The VFH
method employs a two-stage data reduction process in order to compute the desired
control commands for the robot. In the first stage, the histogram grid is reduced to a one-
dimensional polar histogram that is constructed around the robot's momentary location.
Each sector in the polar histogram contains a value representing the polar obstacle
density in that direction. In the second stage, the algorithm selects the most suitable sector
from all polar histogram sectors with a low polar obstacle density, and the steering of the
robot is aligned with that direction.

7.1.2 First Stage - The Building of the Polar Histogram

The first data reduction stage maps the active region C* of the histogram grid C onto
the polar histogram H. The active region C* is a window that moves with the robot,
overlying a square region of ws×ws cells in the histogram grid. The content of each active
cell in the histogram grid is treated as an obstacle vector. The vector direction βi,j is
determined by the direction from the cell to the vehicle center point (VCP):

βi j

j o

i o

y y

x x, tan=
−

−






−1

where:

βi,j: Direction from the VCP to the active cell (i,j).
x0, y0: Present coordinates of the VCP.
xi, yj: Coordinates of active cell (i,j).

62

The vector magnitude is given by:

() ()m c a bdi j i j i j, , ,= −
2

2

where:

mi,j: Magnitude of the obstacle vector at active cell (i,j).
ci,j: Certainty value of active cell (i,j).
di,j: Distance between active cell (i,j) and VCP.
a, b: Positive parameters.

Note that ci,j is squared. This expresses our confidence that recurring range readings
(high ci,j) represent actual obstacles, as opposed to single occurrences of range readings
(low ci,j) which may be caused by noise.

The vector magnitude is also a function of the distance di,j. Occupied cells produce
large vector magnitudes when they are close to the robot, and smaller ones when they are
further away.

The parameters a and b are chosen according to the parameter equation:

a bd− =max
2 1

where

d
ws

max =
− 1

2

This way, mi,j is equal to 1 for the farthest active cell and increases linearly for closer
cells. Note that the last two equations are slightly different from the original version of the
VFH method [9]. With these equations, the VFH amplitude function is point symmetrical
around the robot's center. As a result, the robot's behavior is independent of the direction
in which an obstacle is encountered.

Based on the obstacle vectors, the polar histogram H is built. H has an arbitrary
angular resolution α so that n = 360°/α is an integer. In the current implementation, α is
set to 5° resulting in n = 72 angular sectors.

Each angular sector k corresponds to a discrete angle ρ discretized as multiples of α,
so that:

 ρ α= k where k = 0,1,2,…,n-1.

63

Correspondence between an active cell ci,j and a sector k is established through:

k INT
i j

=








β
α

,

For each sector k, the polar obstacle density hk is calculated by:

h mk i j
i j

= ∑ ,
,

Because of the discrete nature of the histogram grid, the result of this mapping may
appear ragged and causes errors in the selection of the steering direction. To overcome
this problem, a smoothing function is applied to H:

′ =
+ + + + + +

+
− − + + − +h

h h lh h h
lk

k l k l k k l k l2 2

2 1
1 1...

For l, an empirical value of 5 is proposed in [9]. This smoothing filter is eliminated by
an improvement in the VFH+ method which takes in account the size of the robot as
explained in section 7.2.2.

As the histogram is built around the position of the robot independent of its
orientation, this first stage of the VFH algorithm can be implemented very efficiently by
the use of tables.

For an example, Figure 33 shows an obstacle course with a typical corresponding
histogram grid. Figure 34 shows the corresponding polar histogram grid.

64

Figure 33: VFH Example: a) obstacle course, b) histogram grid

Figure 34: Polar Histogram

65

7.1.3 Second Stage - Selection of the Steering Direction

The second data reduction step computes the new steering direction ϕn from the polar
histogram which typically has peaks and valleys. Any valley comprised of sectors with
polar obstacle densities (POD) below a certain threshold τ is called a candidate valley.
Usually, there are two or more candidate valleys. In the original implementation of VFH,
the direction that is closest to the target direction is selected. Once a valley is selected, it is
then necessary to choose a suitable direction within that valley.

First, the VFH algorithm measures the size of the selected valley. Here, two types of
valleys are distinguished, namely, wide and narrow ones. Wide valleys result from wide
gaps between obstacles or from situations where only one obstacle is near the robot.
Narrow valleys are created when the mobile robot travels between closely spaced objects.
The limit angle that distinguishes between a wide and a narrow opening is ϕwide. A valley
is considered wide if more than swide consecutive sectors fall below the threshold with swide

= ϕwide / α. Otherwise it is narrow.
Then, for each valley, the two border sectors k1 and k2 are determined. A border

sector is a sector whose POD value is below the threshold and which has a neighboring
sector whose POD value is above the threshold.

For a narrow opening, the new steering direction is in the center of the opening:

ϕ αn narrow

k k
, =

+1 2

2

For a wide opening, the border sector that is closer to the target direction is
determined. This sector is denoted by kn. The new steering direction is then computed by:

ϕ αn wide n
widek

s
, = +





2

Compared to the Virtual Force Field (VFF) method, an important advantage of the
VFH method is the elimination of vivacious fluctuations in the steering control. With the
averaging effect of the polar histogram, the two border sectors k1 and k2 vary only mildly
between sampling intervals. Thus, the VFH method does not require a low-pass filter in
the steering control loop and is therefore able to react much faster to unexpected
obstacles. Similarly, the VFH controlled robot does not oscillate when traveling in narrow
corridors.

66

7.2 VFH+

During the development of the GuideCane, a few shortcomings of the original VFH
method were identified. The different problems and their solutions are explained in the
following sections. The improved version of the obstacle avoidance algorithm is called the
VFH+ method.

7.2.1 Threshold with Hysteresis - The Binary Polar Histogram

For most applications, a smooth trajectory is desired and oscillations in the steering
command should be avoided. The original VFH method usually displays a very smooth
trajectory. However, in densely cluttered environments with several narrow openings,
oscillations in the steering commands are observable. The source of this problem is the
fixed threshold τ. It is possible that a narrow opening in the histogram switches several
times between an open and blocked state during a few sampling times. In such a situation,
the robot's heading can switch between the heading corresponding to this opening and
another heading. The result is not only an oscillatory behavior, but the mobile robot can
also get very close to obstacles.

This problem can easily be reduced by implementing a hysteresis based on two
thresholds, namely τlow and τhigh. Based on the polar histogram H and the two thresholds,
a binary polar histogram Hb is built. The binary polar histogram is similar to the regular
polar histogram, but instead of having polar density values, each sector is either free (0) or
blocked (1). The binary polar histogram is updated by the following rules:

Hk i
b
, = 1 if Hk,i > τhigh

Hk i
b
, = 0 if Hk,i < τlow

H Hk i
b

k i
b

, ,= −1 otherwise

67

7.2.2 Consideration of the Robot Size

The original VFH method does not take into account the size of the robot. One
associated problem is that the robot has a tendency to cut corners. This problem was
originally reduced by adding a small Virtual Force Field (VFF [8]) component to the
direction given by the VFH method. However, the addition of the VFF component also
added the problems associated with this method. The VFF method can result in
considerable fluctuations in the steering control. These oscillations can be reduced by
adding a low-pass filter to the VFF output. However, this filter introduces a delay that
adversely affects the robot's steering response to unexpected obstacles. Another problem
of the VFF method is that it results in oscillatory and unstable motion under certain
conditions [22][23]. It would be preferable if the VFH method took in account the size of
robot so that the addition of the VFF component would not be necessary anymore.

The standard method to compensate for the size of a mobile robot is to enlarge the
obstacle cells in the map by the robot radius rr. To make sure that the robot does not get
too close to an obstacle, the obstacle cells are actually enlarged by a radius rr+s:

r r dr s r s+ = +

with: rr+s = total radius for enlarging obstacle cells
rr = distance from robot center to its furthest perimeter point
ds = minimum distance between robot and obstacle cell

With the obstacles enlarged by rr+s, the robot can be treated as a point-like vehicle,
which simplifies the obstacle avoidance algorithm. This method works well, as the shape
of most mobile robots can be approximated by a disk of radius rr. If the robot's shape was
very elongated in one direction, the obstacles would have to be enlarged corresponding to
the dimensions and orientation of the robot. In the case of the GuideCane, the shape of
the sensor head is simply approximated by a disk.

A straightforward approach would be to enlarge the obstacles represented in the
histogram grid before building the polar histogram. However, this procedure would
require two maps, one with the original certainty values and one with the enlarged
obstacles.

A simpler and faster method is to directly enlarge the obstacles while building the
polar histogram. Instead of updating only one histogram sector for each cell, all histogram
sectors that correspond to the enlarged cell are updated. An example for a cell is shown in
Figure 35.

68

Figure 35: Enlargement angle

For each cell, the enlargement angle γi,j is defined by:

γ i j
r s

i j

r
d,

,

arcsin= +

The γi,j values for each cell in the VFH window should be stored in a table for faster
performance.

For each sector k, the polar obstacle density hk is then calculated by:

h m hk i j
i j

i j= ′∑ ,
,

,*

with: ′hi j, = 1 if []k i j i j i j i j∗ ∈ − +α β γ β γ, , , ,,

′hi j, = 0 otherwise

The result of this process is a polar histogram that takes in account the size of the
robot. The resulting polar histogram is a good approximation of a polar histogram built by
the standard VFH method applied to an enlarged map. However, this method is much
more efficient as it does both steps in one step.

The h' function also serves as a low-pass filter. As a consequence, the filter used in the
original VFH method is not necessary anymore.

69

7.2.3 Consideration of the Robot Trajectory

The original VFH method takes neither the dynamics nor the kinematics of the robot
into account. It automatically assumes that the robot is able to change its direction of
travel instantly as shown in Figure 36a. Unless the robot stops at every sampling time, this
assumption is clearly violated.

The new proposition assumes that the robot's trajectory is based on arcs of a circle
(constant curvature curves) and straight lines. This assumption is a simple, but close
approximation of the real trajectory of a mobile robot. Examples of such trajectories are
shown in Figure 36b.

a) b)

Figure 36: Approximation of trajectories: a) without dynamics, b) with dynamics

The curvature κ of a curve is defined by:

κ = 1
r

The trajectory curvature of a mobile robot is often a function of the robot velocity.
The faster the robot travels, the bigger the radius of the trajectory curve and the smaller its
curvature. For certain mobile robots, e.g. the GuideCane, these values are even different
for right and left turns. For example, a right-handed user can do much sharper turns to the
left than to the right.

For a differential drive mobile robot that is stopped or is turning on the spot, the
minimum steering radius can be zero. For other mobile robots, like the current
GuideCane, or robots based on the Ackerman steering or the tricycle drive (new
proposition of GuideCane) mechanism, the minimum steering radius is never zero.

The values for the minimum steering radius as a function of the robot velocity can
easily be measured. For the GuideCane, the minimum steering radius is independent of
the velocity. We define these radius for both sides:

rr
r

= 1
κ

70

rl
l

= 1
κ

With these values and the histogram grid, we can determine which sectors are blocked
by obstacles. An example with two obstacles is shown in Figure 37. Again, to take into
account the size of the robot, the obstacles are enlarged by rr+s. We can see that if the
trajectory circle and the enlarged obstacle overlap, all directions from the obstacle to the
backwards direction of motion are blocked by the obstacle. In our example, obstacle A
blocks all directions to its left because of the robot dynamics. On the other hand, obstacle
B does not block the directions to its right.

With the original VFH method, the directions to the left of obstacle A are considered
to be suitable directions of motion. Therefore, if a new desired direction of travel to the
left was entered, the GuideCane would start to turn to the left and hit obstacle A.

With the VFH+ method, the robot would proceed to go between the obstacles A and
B and make a left turn after obstacle A was cleared.

Figure 37: Example of blocked directions

The position of the right trajectory center relative to the robot position is defined by:

∆x rr r= * sinθ

71

∆y rr r= * cosθ

Similar for the left trajectory center:

∆x rl l= − *sinθ
∆y rl l= − *cosθ

Now, we can calculate the distance from a histogram cell ci,j to the two trajectory
centers:

()() ()()d x x j y y ir r r
2 2 2

= − + −∆ ∆ ∆ ∆

()() ()()d x x j y y il l l
2 2 2

= − + −∆ ∆ ∆ ∆

An obstacle blocks the directions to its right if:

()d r rr r r s
2 < + +

And an obstacle blocks the directions to its left if:

()d r rl l r s
2 < + +

By checking every cell in the active window with these two conditions, we will get
two limit angles, ϕr for right angles and ϕl for left angles. We also define ϕb as the
direction backwards to the current direction of motion:

ϕ θ πb = +

This method can be implemented very efficiently by an algorithm that only considers
cells that have an influence on either ϕr or ϕl . The algorithm is the following:

1) Determine ϕb. Set ϕr and ϕl equal to ϕb.

2) For every cell ci,j in the active window C* with a CV > τ:
a) if βi,j is to the left of θ and to the right of ϕl, update ϕl.
b) if βi,j is to the right of θ and to the left of ϕr, update ϕr.

If the robot sensors are not very reliable, ϕr and ϕl could also be determined in a
more stochastic way. Instead of comparing the cell certainty value to a threshold, one
could build a histogram whose sector values indicate the certainty that it is blocked
because of the robot dynamics. By applying a threshold to this histogram, one could get
the values for ϕr and ϕl. However, the first method is more efficient so that this method
should only be applied if the sensors are not very reliable.

72

With ϕr, ϕl, and the binary polar histogram, we can build the masked polar histogram:

Hk i
m
, = 0 if Hk i

b
, = 0 AND () [] []{ }k r l* , ,α ϕ θ θ ϕ∈ ∧

Hk i
m
, = 1 otherwise

The masked polar histogram tells the robot which directions of motion are possible at
the current speed. If all values were set to one, the robot could not proceed at the current
speed. The robot would have to determine a set of new values (ϕr, ϕl) based on a slower
speed. If the masked polar histogram was still set to one for every direction, the robot
would need to stop immediately.

In Figure 38, the polar histogram, the binary polar histogram, and the masked polar
histogram are shown for our example. The binary polar histogram incorrectly indicates
that the directions to the left of obstacle A are free. The masked polar histogram correctly
blocks these directions.

Note that the vector magnitudes for obstacle A are bigger than for obstacle B. The
reason is that obstacle A is closer to the robot. Also note that obstacle A occupies more
sectors than obstacle B. As obstacle A is closer to the robot, its enlargement angle is
bigger.

Figure 38: a) Polar histogram, b) binary polar histogram, c) masked polar histogram

7.2.4 Cost-Based Direction Selection

73

The masked polar histogram shows which directions are free of obstacles and which
ones are blocked. However, some free directions are better candidates than others for the
new direction of motion.

The original VFH method selects the candidate valley that most closely matches the
direction to the target direction kt. This method is very goal-oriented as it is based solely
on the difference between the target direction and the candidate valley direction. The
candidate direction is then determined dependent on the size of the valley.

The new improved method first finds all valleys in the masked polar histogram and
then determines all possible candidate directions. A cost function that takes into account
more than just the difference between the candidate and the target direction, is then
applied to these candidate directions. The candidate direction kn with the lowest cost is
then chosen to be the new direction of motion ϕn:

ϕ αn nk= *

In the first step, the right and left borders kr and kl of all valleys in the masked polar
histogram are determined. Similar to the original VFH method, two types of valleys are
distinguished, namely, wide and narrow ones. A valley is considered wide if the
difference between its two borders is bigger than smax sectors (in our system smax = 16).
Otherwise, the valley is considered narrow.

For a narrow valley, there is only one candidate direction so that the robot drives
through the center of the gap between the corresponding obstacles:

c
k k

n
r l=

+
2

centered direction+

For a wide valley, there are two to three candidate directions dependent on the target
direction:

c k
s

r r= + max

2
direction towards the right side of the valley+

c k
s

l l= − max

2
direction towards the left side of the valley+

c kt t= if []k k kt r l∈ , direction equal to the target direction

The candidate directions cr and cl make the robot follow an obstacle contour at a
safe distance, while ct leads the robot towards the target direction.

+ Because of the histogram boundaries, some care must be taken when applying these equations.

74

For robots that are not goal-orientated, other candidate directions could be added.
For example, for a robot that should randomly explore its environment, we could add the
following candidate directions:

c kθ θ= if []k k kr lθ ∈ , direction equal to current direction of motion

or:

c kϕ ϕ= if []k k kr lϕ ∈ , direction equal to previous direction

In the case of the goal-orientated robot, we get between one and three candidate
directions for each valley in the masked polar histogram. Next, we need to define an
appropriate cost function, so that the robot selects the most appropriate candidate
direction as its new direction of motion ϕn. We propose the following cost function g as a
function of a candidate direction c:

() ()g c c k c c kt
i

n i() * , * , * , ,= +




 + −µ µ

θ
α

µ1 2 3 1∆ ∆ ∆

where ∆(c1,c2) is a function that computes the absolute angle difference
between two sectors c1 and c2 so that the result is ≤ α/2. One possible
implementation is:

() { }∆ c c c c c c c c1 2 1 2 1 2 1 2, min , ,= − − − − +α α

The first term represents the cost associated with the difference of a candidate
direction and the target direction. The bigger this difference is, the more the candidate
direction will guide the robot away from its target direction, and hence the bigger the cost.

The second term represents the cost associated with the difference of a candidate
direction and the robot's wheel orientation. The larger this difference, the larger the
required change of the direction of motion is.

The third term represents the cost associated with the difference of a candidate
direction and the previously selected direction of motion. The bigger this difference, the
bigger the change of the new steering command is. This term has also a short-term
memory effect.

75

In short, the first term is responsible for the goal orientated behavior, while the
second and third term make the mobile robot commit to a direction. The need for a
commitment effect can be explained with an example as shown in Figure 39. This is a
typical situation where the mobile robot encounters a small obstacle. The two possible
candidate directions are to the right or to the left of the obstacle. Both candidate directions
deviate about the same amount of the target direction. If the cost function consisted of
only the first term, similar to the original VFH method, both candidate directions would
seem to be equally good. In tests with a mobile robot, the robot's heading often switched
several times between the two directions. It seemed as if the robot did not make up its
mind on which side to avoid the obstacle. As a result, the robot could get very close to the
obstacle, and in some cases even crash into it. The problem is that with the first term
alone, the mobile robot does not commit to either direction, so that small changes in its
world representation can make it change its mind.

Figure 39: Need for short-term memory

This problem is overcome with the second and third term. These terms provide a
form of short-term memory to the robot. The second term is similar to a mechanical
memory. However, this term alone would not completely fix the problem as the time
between two samples is often too small for an observable change in the robot's
orientation. For this reason, the third term is added. With the help of this term, the robot
commits to a direction even before its orientation has changed.

76

The higher µ1 is, the more goal oriented the robot's behavior is. The higher µ2 is,
the more the robot tries to execute an efficient path with a minimum change of direction
of motion. The higher µ3 is, the more the robot tries to head towards the previously
selected direction and the smoother is the trajectory.

The absolute values of the three parameters are not important. Only the relation
between the three parameters is important. To guarantee a goal orientated behavior, the
following condition must be satisfied:

µ µ µ1 2 3> + [condition 1]

If this condition was not satisfied, the robot would try to continue towards its
current direction of motion even if it could head towards the target direction.

If an efficient path is more important than variations in the steering commands,
then µ2 should be set higher than µ3. Otherwise, if the smoothness of the steering
commands is more important than the efficiency of the robot trajectory, then µ3 should be
set higher than µ2.

Experiments have shown that a good set of parameters for a goal oriented mobile
robot is:

µ1 = 10, µ2 = 4, µ3 = 4

It is also possible to add other terms to the cost function. For example, we can
make the mobile robot avoid narrow openings like doors by adding a term that takes in
account the valley width:

()µ4 * ,∆ k kr l

On the other hand, the cost function could also be temporarily modified to make
the mobile robot look for and go through narrow openings by adding the following term:

()µ4

1
*

,∆ k kr l

The cost function allows the user to develop a more subtle behavior than the
coarse approach of the original VFH method. With the current cost function, the second
and third term are responsible for a more efficient and smoother trajectory. Another
advantage is that the mobile robot behavior can easily be changed by modifying either the
cost function parameters or the cost function itself.

77

7.2.5 Performance of the VFH+ Method

In short, the VFH+ method is very fast and very effective. On a PC 486 running at
67 MHz, the algorithm takes less than 6 ms in the worst case. The speed of an obstacle
avoidance algorithm is essential for two reasons. Firstly, the higher the sampling rate of
the obstacle avoidance method is, the faster the robot can travel without oscillations and
without risk of bumping into an obstacle. Actually, due to the speed of this algorithm, the
robot speed is now limited by the sampling rate of its sensors. Secondly, the faster the
obstacle avoidance method is, the more computational power can be used for usually
time-consuming high-level behaviors.

The VFH+ method is about as fast as the original VFH method. Only the
consideration of the robot trajectory requires additional computation time. However, due
to the consideration of the robot size, the addition of a small VFF component is not
required anymore, so that the total time of these algorithms should be about the same.

The performance of the VFH+ method is superior over the original VFH method.
The robot trajectory is smoother and has fewer oscillation due to the threshold hysteresis
and the commitment effect of the cost function. With the consideration of the robot size,
the robot goes nicely around corners without the need for VFF. It also allows one to
easily apply this method to a robot of any size without much parameter adjusting. It
especially eliminates the need to find a suitable smoothing filter, which was usually done
through long procedures of trial and error.

The main improvement of the VFH+ method is the consideration of the robot
trajectory. With the original VFH method, the robot could be directed into an obstacle if a
new desired direction of motion was entered at the wrong time. The performance of the
original VFH method also degraded when the robot's orientation was more than 90°
different from the target direction. The VFH+ method eliminates these problems.

Another very nice feature of the VFH+ method is that it is very insensitive to its
parameter values. As long as condition 1 is satisfied and the parameter values are selected
reasonably, the VFH+ method performs well. Unlike most other obstacle avoidance
methods, the VFH+ method requires almost no time adjusting the parameter values.

The VFH+ method allows the GuideCane user to travel at speeds up to 1 m/s. The
speed is actually not limited by the VFH+ performance, but by the number of sonars and
their sampling rate.

78

7.3 VFH*

Although the performance of the VFH+ obstacle avoidance method is very
satisfactory, this method sometimes directs the mobile robot into dead-ends that could be
avoided. To overcome this problem, the VFH* method was developed. This method is a
combination of the VFH+ method and the A* search algorithm

7.3.1 Extremely Local Nature of VFH Method

Both, the original VFH and the VFH+ method, are extremely local obstacle avoidance
methods. Their purpose is to provide fast local obstacle avoidance behavior to a mobile
robot. The robot's high-level planning is either done by a global planner in the case of an
autonomous robot, or by a human in the case of a tele-operated robot.

The task of an obstacle avoidance algorithm is to find a suitable path around local
obstacles, not to plan a path to the goal. This explains the need for a fast local obstacle
avoidance algorithm. However, in certain situations, the VFH+ method is too local to
effectively guide the mobile robot around obstacles.

The VFH+ method analyzes only the robot's immediate surroundings before deciding
to head towards a seemingly appropriate direction. This reasoning is extremely local as it
does not look ahead to verify if the proposed new direction of motion ϕn will guide the
robot around the obstacle or if it will guide it into a dead-end.

For a better understanding of the local nature of the VFH+ method, let's analyze the
robot's encounter with an obstacle as shown in Figure 40. Remember that the VFH
amplitude function is point symmetrical with a radius rVFH. A certainty cell is only
considered by the VFH+ method if its distance to the robot is smaller than rVFH. Because
of the function's symmetry, any obstacle getting inside this radius first appears in the
polar histogram as if it was a small obstacle independent of its real shape. As a result, the
polar histogram indicates two possible directions: to the right or to the left of this obstacle
part. This works fine as long as the obstacle is really as small as indicated by the polar
histogram. However, if the obstacle is bigger, as shown in Figure 40, one direction is often
much better than the other one. While the direction to the right would lead the robot
around the obstacle, the direction to the left would lead it into the corner where it would
end up being trapped. By the time the full corner is represented in the polar histogram, the
robot is already too close to get out of the corner without stopping or dramatically
slowing down.

Whenever the robot encounters an obstacle that should be avoided on one specific
side, the VFH+ method chance of choosing the right direction is only about 50%. If there
are several successive local dead-ends, these methods will lead the mobile robot very
likely into a dead-end.

79

It is important to note that increasing rVFH would not reduce this problem.
Independent of this parameter, an obstacle always looks narrow during the early
approach. Another approach of temporarily increasing rVFH when an obstacle is detected
and resetting it when the obstacle is cleared also fails in many situations. One such
example is if a new obstacle is encountered while the robot is still moving around another
obstacle. In addition, increasing rVFH is also a dangerous approach as it may unnecessarily
block all directions as explained in section 7.1.2.

It is also important to note that an obstacle avoidance algorithm can only be blamed
for guiding a robot into dead-ends that are represented as such in its map while it still has
the possibility to avoid them. However, the sensor look-ahead of most mobile robots is
usually bigger than rVFH. In the case of the GuideCane, rVFH is set to 1.5 m while the look-
ahead of its sonars is 2.5 m. This means that the VFH+ method only uses the information
stored in the certainty grid inside a range of 1.5 m even though it would have information
for the range of 2.5 m. In the situation shown in Figure 40, the obstacle is likely to be
represented as a corner in its map. Therefore, even though the map representation would
provide enough information to avoid the dead-end, the VFH+ method leads the robot into
the dead-end with a chance of 50%.

Figure 40: Problematic obstacle shape for a local obstacle avoidance algorithm

80

7.3.2 Local Planning

The only way to overcome this problem is to make the obstacle avoidance algorithm
less local. This can be done by adding a little planning to the existing method, resulting in
a dynamic re-planner with a smooth cut-off. The term "little" is used as it is impracticable
to plan a long way ahead, unless the robot has an accurate and reliable representation of
its environment. However, if the robot had such a map, it could simply rely on its global
path planner without requiring a local obstacle avoidance algorithm. As most
environments are dynamic, planning far ahead can be very inefficient.

In most cases, the obstacle avoidance algorithm should not plan much further ahead
than it can reliably detect obstacles with its sensors. With its sensors, the robot has more
certainty about its immediate surrounding than about its path ahead.

The general idea of the VFH* method is to project the outcome of the trajectories for
each current candidate direction. These directions are called primary candidate
directions. We compute for each primary candidate direction the new position and
orientation the robot would have after having moved for a projected distance of dp in this
direction. At every projected position, a new polar histogram is build. These histograms
are then again analyzed for candidate directions, called projected candidate directions.
By repeating this process ng times, we get a search tree of depth ng, where the end nodes
(goals) correspond to a total projected distance of dt = ng*dp. Therefore, the goal of the
search is to find a projected trajectory of distance dt.

Nodes in the search tree represent the projected positions and orientations of the
mobile robot. Branches represent the candidate directions leading from one position to
another.

For every candidate direction, a cost g(n) is calculated similar to the cost function
defined in section 7.2.4. The cost associated with a node is the sum of the costs associated
with the branches leading to this node. The primary candidate direction that leads to the
end node with the minimum total cost is then selected as the new direction of heading ϕn.

7.3.3 A* Search

For a better understanding of the concept of the local planner, the VHF* method was
described in section 7.3.2 as if it was based on the breadth-first search algorithm. In
practice, it is more efficient to implement a uniform cost search algorithm based on the
cost function. This way, the node with the lowest cost is expanded next. As the projected
total path cost never decreases, this search method is optimal and complete.

To make the search more efficient, we can introduce a heuristic function h(c) similar
to the cost function. This allows us to apply the A* search method which is more
efficient, but still optimal and complete as long as the heuristic function never
overestimates the cost to reach the goal [33]. The estimated cost of the cheapest solution
f(c) is then defined by:

f(c) = g(c) + h(c)

81

7.3.4 Search Parameters

An important parameter is the total projected distance dt. The goal depth ng is
proportional to this parameter. The minimum value of zero makes this algorithm similar to
the VFH+ method with its extremely local behavior.

The higher dt is selected, the bigger is the planner look-ahead, and the better are the
results of this method. However, if this parameter is selected too high, the obstacle

avoidance algorithm will be substantially slowed down as it is O(bng). In any case, it is
not recommended to choose a total projected distance value that exceeds by far the look-
ahead of the robot sensors, unless the robot has an accurate map of a mostly static
environment.

Therefore, the selection of dt is a trade-off between the algorithm speed and the
quality of the algorithm result. A good compromise is to set this parameter equal to the
look-ahead of the sensors.

Another important parameter is the length dp of how far the new position is projected
ahead at each step. This parameter together with dt determines the goal depth ng = dt/dp.

If dp is selected too big, the new position might be projected across or right into an
obstacle. As this parameter value increases, the higher the risk of such an incorrect
projection becomes. As a result of such a projection, the search method could come up
with a new direction of heading ϕn that is not desirable.

If dp is selected too small, the effect of a projection is too small and a high value of ng

would be required. This would result in an unnecessary deep search tree that would
require too much computation resources and would substantially slow down the obstacle
avoidance algorithm.

Therefore, the selection of dp is a trade-off between the algorithm speed and the
validity of the result. Experiments have shown that a good compromise is to set this
parameter equal to the diameter of the robot.

7.3.5 The Expansion Step

The expansion of a node consists of building the masked polar histogram at the node's
projected position, determining the corresponding candidate directions, calculating the
projected position and orientation of the following nodes, determining the cost of
reaching these nodes, and determining their heuristics.

The first two steps, building the masked polar histogram and determining the
corresponding candidate directions, are done the same way as in the VFH+ algorithm.
The other three steps are described in more detail in the following sections.

82

7.3.5.1 Projection of Position and Orientation

The computation of the projected position and orientation for a candidate direction ϕc

can be done in many ways. In our approach, the projected robot trajectory is again
approximated by arcs of a circle and straight lines. This approximation is a good trade-off
between accuracy and speed of the algorithm. Examples of such trajectories are shown in
Figure 41:

Figure 41: Projected trajectories

The current position and orientation of the robot are defined as xi, yi and θi. The
projected variables are defined as xi+1, yi+1 and θi+1. The parameters are the projected
distance dp and the minimum steering radius rr and rl as defined in section 7.2.3.

7.3.5.1.1 The Projection Equations

For a given candidate direction ϕc, we need to determine first if the robot can reach
this orientation during the projected distance. If not, the trajectory is simply approximated
by a constant curvature curve. The maximum direction to the right is defined by:

θ θr i

p

r

d

r
= −

Similar for the maximum direction to the left:

θ θl i

p

l

d

r
= +

83

We also need to distinguish between candidate directions to the right and to the left of
the robot, as the corresponding equations are different. We end up with four sets of
equations:

1. If the candidate direction ϕc is to the right of the robot and it exceeds θr:

x x x yi i r i r i+ = + +1 ∆ ∆,max ,max* cos * sinθ θ
y y x yi i r i r i+ = − +1 ∆ ∆,max ,max*sin *cosθ θ
θ θi r+ =1

with: ∆x r
d

rr r

p

r
,max * sin=

∆y r
d

rr r

p

r
,max * (cos)= −1

2. If the candidate direction ϕc is to the left of the robot and it exceeds θl:

x x x yi i l i l i+ = + +1 ∆ ∆,max ,max* cos *sinθ θ
y y x yi i l i l i+ = − +1 ∆ ∆,max ,max*sin * cosθ θ
θ θi l+ =1

with: ∆x r
d

rl l

p

l
,max * sin=

∆y r
d

rl l

p

l
,max * (cos)=







 − 1

It is important to note that if rr and rl are constant, the values for ∆xr,max, ∆yr,max, ∆xl,max

and ∆yl,max need only be initialized once at the start of the program.

3. If the candidate direction ϕc is to the right of the robot but does not exceed θr:

x x x y di i r i r i s c+ = + + +1 ∆ ∆ ∆*cos * sin * cos()θ θ ϕ
y y x y di i r i r i s c+ = − + −1 ∆ ∆ ∆* sin * cos * sin()θ θ ϕ
θ ϕi c+ =1

with: ()∆x rr r i c= −* sin θ ϕ

()()∆y rr r i c= − −* cos1 θ ϕ
∆d d rs p r i c= − −* ()θ ϕ

84

4. If the candidate direction ϕc is to the left of the robot but does not exceed θl:

x x x y di i l i l i s c+ = + + +1 ∆ ∆ ∆* cos *sin * cos()θ θ ϕ
y y x y di i l i l i s c+ = − + −1 ∆ ∆ ∆* sin * cos *sin()θ θ ϕ
θ ϕi c+ =1

with: ∆x rl l c i= −*sin()ϕ θ

()()∆y rl l c i= − −* cos ϕ θ 1

∆d d rs p l c i= − −* ()ϕ θ

7.3.5.1.2 The Projection Look-Up Lists

A computationally much more efficient solution is to calculate the projected values
for a certain orientation θ0, to store the results of different candidate directions ϕc in look-
up lists, and to use this data for any orientation through a simple rotary transformation.

Based on the previous equations, we can calculate the values ∆x0, and ∆y0 as a
function of ∆ϕ = (ϕc-θ) for an arbitrary orientation of θ0 = 0°. These values are then stored
in look-up lists. In the current implementation, these values are stored in increments of 1°
for ∆ϕ. For any orientation θi, the corresponding values can then be calculated by:

() ()x x x yi i i i+ = + +1 0 0∆ ∆ ∆ ∆ϕ θ ϕ θ* cos *sin

() ()y y x yi i i i+ = − +1 0 0∆ ∆ ∆ ∆ϕ θ ϕ θ*sin * cos

with: () []∆ϕ ϕ θ π π= − ∈ −c , in steps of 1°

The equations to initialize the two look-up lists are as follows:

1. If ∆ϕ < −
d

r
p

r

:

()∆ ∆x r
d

rr

p

r
0 ϕ = * sin

()∆ ∆y r
d

rr

p

r
0 1ϕ = −* (cos)

85

2. If ∆ϕ >
d

r
p

l

:

()∆ ∆x r
d

rl

p

l
0 ϕ = * sin

()∆ ∆y r
d

rl

p

l
0 1ϕ =







 −* (cos)

3. If ∆ϕ ∈ −










d

r
p

r

,0 :

() () ()∆ ∆ ∆ ∆ ∆x r d rr p r0 ϕ ϕ ϕ ϕ= − + +* sin * * cos()

() ()() ()∆ ∆ ∆ ∆ ∆y r d rr p r0 1ϕ ϕ ϕ ϕ= − − +* cos * *sin()

4. If ∆ϕ ∈








0,

d

r
p

l

:

() () ()∆ ∆ ∆ ∆ ∆x r d rl p l0 ϕ ϕ ϕ ϕ= + −* sin * * cos()

() ()() ()∆ ∆ ∆ ∆ ∆y r d rl p l0 1ϕ ϕ ϕ ϕ= − − −* cos * * sin()

86

7.3.5.2 Cost Function

In section 7.2.4, we defined the cost function for a primary candidate direction c0

leading from the root node at depth 0 to its successor node as following:

() ()g c c k c c kt
i

n i() * , * , * , ,0 1 0 2 0 3 0 1= +




 + −µ µ

θ
α

µ∆ ∆ ∆

The purpose of the three terms is the same as in the cost function of the VFH+
method. While the first term is responsible for the goal orientated behavior, the other two
terms make the robot commit to a direction. For a goal orientated robot, we still have the
following condition:

µ µ µ1 2 3> + [condition 1]

For a projected candidate direction cn of a node at depth n bigger than zero, we
propose a slightly modified cost function as following:

() (){ } ()g c c k k k c c cn n
n

n t p t n
n

n n() * * max , , , * , * ,= ′ + ′




 + ′









−λ µ µ

θ
α

µ1 2 3 1∆ ∆ ∆ ∆

with: k
y y
x xp

i i

i i

= −
−
−







+

+
arctan 1

1

and: 0 1< ≤λ

In short, the first term is responsible for the goal-orientated behavior, while the
second and third term give preference to projected trajectories that are smooth and
efficient.

The first term represents again the cost associated with the deviation from the
target direction, resulting in the goal orientated behavior of this obstacle avoidance
method. However, this term is slightly different for a projected candidate direction than it
is for a primary candidate direction.

In the case of a projected candidate direction, this term also considers the effective
direction of motion, or in other terms, the forward progress of a trajectory. There is an
important difference between a candidate direction cn and the corresponding effective
direction of motion kp. Ideally, we want them both to be in the same direction as the target
direction. However, dependent on the robot's current orientation, it is possible for either
of them to be equal to the target direction while the other one deviates largely from it.

87

If we were not considering the effective direction of motion, a part of the projected
trajectory could be very cheap even though it does not make any forward progress. Such
an example, where the cost associated with the first term would even be zero, is shown in
Figure 42. With the modified first term, the cost of this trajectory is correctly very high, as
it provides no forward progress at all.

It is important to note that the first term of the cost function for a primary
candidate direction does not consider the effective direction of motion. If the robot can
select a primary candidate direction that is close to the target direction, the associated cost
should be small even if the corresponding effective direction of motion deviates largely
from the target direction. The effective direction of motion for a primary candidate
direction depends a lot on the current orientation, while the effective direction of motion
for a projected candidate direction depends on the projected trajectory. As the robot has
no control over the current orientation, there is no reason to associate a cost with the
effective direction of motion of a primary candidate direction. On the other hand, the
robot has control over its projected trajectory, so that it makes sense to associate a cost
with the effective direction of motion of a projected candidate direction.

Figure 42: Effective direction of motion kp

The second and third term have a different meaning for a projected candidate
direction than for a primary candidate direction. In the case of a primary candidate
direction, these terms represent a short-term memory effect that makes the robot commit
to a direction. In the case of a projected candidate direction, the second term represents
the cost associated with the efficiency of a projected trajectory, while the third term
represents the cost associated with its smoothness. These terms quantify the quality of a
projected trajectory. These terms are not necessary, but they can provide a better
trajectory.

88

The higher µ1' is, the more goal oriented the robot's behavior is. The higher µ2' is,
the more the robot tries to find an efficient path. The higher µ3' is, the more the robot tries
to find a smooth path.

The absolute values of the three parameters are again not important. Only the
relation between them is important. For a goal oriented robot, the following condition
must be satisfied:

′ > ′ + ′µ µ µ1 2 3 [condition 2]

To emphasize the importance of a primary candidate direction over a projected
candidate direction, the following condition must also be satisfied:

µ µ1 1≥ ′ [condition 3]

Experiments have shown that a good set of parameters for a goal oriented mobile
robot is:

µ1 = 10, µ2 = 4 , µ3 = 4
µ1' = 10, µ2' = 2 , µ3' = 2

Another important parameter is the discounting factor λ. Instead of giving equal
weight to all candidate directions, they are weighted by a factor λn. Therefore, for a
candidate trajectory, the cost of its candidate directions (branches) decreases
exponentially with rate λ. There are three reasons for the introduction of this factor.

First of all, it decreases the problem of having a fixed goal depth ng which results
in a sharp cut-off. Without λ, all branches would have the same weight and the obstacle
avoidance algorithm would not always behave as we desired. An example of such a case
with ng set to 7 is shown in Figure 43. Without λ, the total cost of trajectory B could be
cheaper than the one of trajectory A. As a result, the robot could keep going towards the
right without ever trying to get closer to wall #1. The reason for this behavior is the fixed
goal depth ng and the associated sharp cut-off. Without λ, the obstacle avoidance
algorithm has a tendency to find trajectories that stop shortly before being influenced by
an obstacle. If ng was increased by just one, trajectory B would become much more
costly, maybe even more costly than trajectory A. However, even if trajectory B became
more costly than A, the obstacle avoidance algorithm would pick trajectory C as its
cheapest trajectory, again trying to stop shortly before being influenced by an obstacle.
By introducing λ, the cut-off at the last branch is less sharp as the weight of the last
branch becomes much smaller. Consequently, trajectory A of our example becomes
clearly cheaper than trajectory B. If we set λ higher than one, the obstacle avoidance
would tend even more to find trajectories that stop shortly before an obstacle gets inside
the histogram range.

89

Secondly, the discounting factor λ takes in account the uncertainty of the map
information. Due to its sensors, the mobile robot has more certainty about its immediate
surroundings. The further the projected position is away from the current position, the
more uncertain is the content of the map at that position. Therefore, it makes sense to
weight the branch cost according to its node depth.

Finally, by simply adding all branch costs together without λ is the same as setting
λ equal to one. With the introduction of λ, we have more control about the weights of the
branches at different depths. By having the possibility to adjust λ, we gain more control
over the search algorithm's behavior.

Figure 43: Necessity of λ

7.3.5.3 Heuristic Function

The heuristic function h(c) is the estimated cost of the cheapest path from the state at
node n to a goal state. A function is an admissible heuristic if it never overestimates the
cost to reach the goal.

With condition 2 satisfied, the cost is cheapest if the robot can head towards the goal
direction kt at every following node. We can get a simple admissible heuristic by replacing
cn in the cost function by kt:

()h n k k cn n
n

t
n

t n() * * , * ,=




 +









−λ µ

θ
α

µ2 3 1∆ ∆

This heuristic only considers the cost associated with the next branch. It also does
not consider the cost associated with the effective direction of motion. Therefore, this

90

heuristic is not optimal as it underestimates the minimum path to reach a goal node.
However, this heuristic is admissible and computationally very efficient.

A better admissible heuristic that also considers the cost associated with the
effective direction of motion is as following:

() ()h n k k k k cn n
n

p t t
n

t n() * * , * , * ,= ′ + ′




 + ′









−λ µ µ

θ
α

µ1 2 3 1∆ ∆ ∆

with: k
y y
x xp

i i

i i

= −
−
−







+

+
arctan 1

1

based on cn = kt

This heuristic is better but less computationally efficient that the previous one. It is
also not optimal because it considers the minimum cost associated with only the next
branch.

To get an optimal heuristic, one could simply expand (without building the
masked polar histogram and determining the corresponding candidate directions) the
current node until the goal depth by using the target direction as the candidate direction at
each node. By adding up the corresponding costs, we could get the optimal heuristic
value. However, this heuristic requires much more computational power.

The difference between these heuristics is a trade-off between quality and speed of
the heuristic function. The first heuristic is currently implemented.

7.3.6 Reducing the Branching Factor

By reducing the branching factor b of the search tree, the search algorithm becomes
faster and requires less memory. This reduction can be done by eliminating redundant
nodes.

Each node has a number of successor nodes equal to the number of its candidate
directions. Because of the limited projected distance dp, the projected position and
orientation of several successor nodes can be identical. All candidate directions to the
right of the robot that exceed θr have the same projected position and orientation. Also all
candidate directions to the left of the robot that exceed θl have the same projected
position and orientation. To reduce the branching factor, all but the cheapest candidate
direction for both sides can be eliminated.

The explanation for the validity of this approach is simple. Let's assume that a node
has several candidate directions that exceed θl. As their projected positions and
orientations are identical, their polar masked histograms would be identical as well.
Therefore, the nodes of the remaining search trees for these candidate directions would be
identical as well. However, the costs associated with these branches would be different.
As long as condition 2 is satisfied, the costs of the search tree nodes starting at the
candidate direction with the lowest cost are always cheaper than the corresponding nodes
of the other candidate directions.

91

Due to this node elimination method, the branching factor b is rarely bigger than
three.

Another important speed improvement is achieved by only expanding the search tree
if there are more than one primary candidate direction. If there is only one primary
candidate direction, there is no need to expand the search tree as the robot has no choice
anyway. Expanding such a search tree would only make sense, if the robot not only
considered the selected primary candidate direction but also the corresponding projected
trajectory.

92

7.3.7 Performance of the VFH* Method

Simulated examples of the VFH* method based on the first heuristic and a goal
depth of five are shown in Figure 44. This figure shows the search trees at different times
during the traversal of an obstacle course.

Figure 44: VFH* examples

93

The VFH* method is identical to the VFH+ method if the goal depth dg is set to
one. The higher dg is selected, the better the VFH* performance becomes, but also the
slower the algorithm becomes. By allocating more computational power to the obstacle
avoidance algorithm, an even better performance than the VFH+ method can be obtained
with the VFH* method

A comparison based on tests on a PC 486 running at 67 MHz is shown in Table
21. These tests were based on the first heuristic. The second column averages the
computation time over an obstacle course without taking in account the times when there
is only one primary candidate direction. The third column shows the maximum observed
required computation time.

dg Taverage Tmaximum

2 5 ms 11 ms
3 8 ms 22 ms
4 10 ms 39 ms
5 12 ms 82 ms
10 30 ms 242 ms

Table 21: VFH* goal depth comparison

The comparison table shows that the VFH* method is still fast as long as the goal
depth is small. The maximum required time could be decreased by applying additional
branching factor reduction techniques.

Tests with the simulated and the real robot have shown that even a goal depth of
two is often enough to avoid most small dead-ends. As the GuideCane's on-board
computer only runs at 33 MHz, this parameter value was selected in the current
implementation.

With the look-ahead of the sonars, a goal depth between 3 and 5 would be
optimal. However, the corresponding sampling rate could be too slow with the current
computer.

The VFH* method is also very insensitive to its parameter values, and thus
requires almost no time adjusting them. As long as conditions 1 to 3 are satisfied and the
parameter values are selected reasonably, the VFH* method performs well.

The VFH* method could also be used as a planner, especially in static and known
environments. This could easily be implemented by defining the target position as the
goal instead of a total projected distance. However, if the distance to the target position is
very large, the iterative deepening A* search should be implemented to reduce the
memory requirements.

94

7.4 Wall Following

As long as the wall is represented in the histogram grid, both the VFH+ and the VFH*
methods perform the wall following task well. If some parts of the wall are not
represented in the histogram grid, the GuideCane believes that there is an opening in the
wall. As a result of this misrepresentation, the robot could decide to head towards this
virtual opening.

Tests showed that the sonars have much more difficulty representing a wall in the
histogram grid than a small obstacle. They especially have problems with walls that have a
very smooth surface, as the ultrasonic wave emitted by the forward-facing sensors is
reflected away by the specularly reflective walls. Only the signals from sensors that are
nearly perpendicular to the smooth wall are reflected back. When the GuideCane follows
a smooth wall, usually only the side-facing sonars receive an echo, and increase the
corresponding certainty values in the histogram grid. The first problem of representing a
smooth wall in the histogram grid is that only one sonar is able to detect it. This problem
will be reduced with the new proposed GuideCane structure that has three additional
sonars. With this version, it is expected that at least two sonars will always detect the wall.

The problem becomes worse, because the wall is only detected by the sonar that
travels perpendicularly to it. There is a fundamental difference how an obstacle in front of
the GuideCane and how an obstacle on its side is represented in the histogram grid. In the
current implementation, the look-ahead of the sonars is 2.5 m, while the VFH radius rVFH

is 1.5 m. The desired walking speed is 1 m/s and the sampling frequency of the sonars is
10 Hz. Therefore, the GuideCane gets a new sonar reading for every 10 cm of travel.
However, 10 cm is also the size of the histogram grid cells. Now, when the GuideCane
approaches an obstacle in front of it, the corresponding cell is updated about 10 times
before it enters the VFH radius. On the other hand, when the GuideCane follows a
smooth wall, every cell corresponding to the wall is on average only updated once by a
side facing sonar. Therefore, while the certainty value of a cell corresponding to an up-
coming obstacle can be increased several times before influencing the VFH output, a cell
corresponding to a smooth wall is increased only once.

To reduce this problem, a high value of +50 is given to the increment parameter I+ for
cells updated by the side-facing sonars. Setting I+ for a side-facing sonar to such a high
value is still safe, as a falsely updated cell on the robot's side would rarely have a big
influence on the obstacle avoidance behavior. Unfortunately, this method reduces the
problem only a little.

To really overcome this problem, a wall-following behavior was added to the
GuideCane. The idea of this method is that the wall is often much better represented in
the histogram grid at a distance dlag behind the robot. So, one possibility would be to
build the masked polar histogram at dlag behind the robot instead of at its current position.
This method would work well for the wall-following behavior, but it would fail with
obstacles in the robot's path.

95

A better solution is to combine the current masked polar histogram with the masked
polar histogram built at dlag behind the robot. The combination is done by the OR
function. With this combined polar histogram as the input for the obstacle avoidance
algorithm, the GuideCane follows smooth walls very well and still reacts well to up-
coming obstacles. The parameter dlag is set to 50 cm. This position corresponds to a
location between the user and the GuideCane center. This method is simple and safe, as
the GuideCane can assume that the location of the user is different from the wall location.

In densely cluttered environments, it is possible that the combined polar histogram is
blocked in every direction while the current masked polar histogram is not blocked. In
that case, the robot could incorrectly believe that it is trapped. To overcome this potential
problem, the GuideCane first analyzes the combined polar histogram. If all directions are
blocked, it analyzes the current masked polar histogram instead. Only if this histogram is
also blocked, will the robot stop.

In the current implementation, the user can switch between the regular obstacle
avoidance behavior and the wall-following behavior by pressing the lower button on the
input pointer. With the wall-following behavior, the GuideCane ignores small openings
like doors in the wall. With the regular behavior, the GuideCane tries to go through doors.

96

8. The Development Environment

The quality of the development environment is essential for any project involving a
real mobile robot. During the GuideCane project, several development environments have
been built, each having its advantages and disadvantages. These development
environments are explained in the following sections.

8.1 The Tether Environment

A simple but effective development environment utilizes a Cybex Companion tether
[16]. This product consists of a signal buffer and a long cable which allows one to connect
a keyboard and a VGA (or better) monitor up to 250 feet away from the GuideCane PC.
The tether is fixed to the GuideCane. The tether cable runs from the on-board PC to a
ceiling-mounted rotating beam and then to a stationary keyboard and monitor on the
developer’s desk. The robot can thus travel freely throughout a relatively large work area
(about 6m × 6m). A particular advantage of the system is that it behaves exactly like a
single desktop unit. Moreover, a power cable can be put in parallel to the tether cable, so
that the GuideCane can be connected to a power outlet. Hence, unlimited testing
independent of the battery capacity is possible. The power cable is connected to a small
AC/DC converter delivering 5V at up to 5A. Disadvantages of this system are the limited
area of operation and the fact that the tether has to be unwound periodically.

This environment is very useful during the early stages of development when a large
area for testing is not required. It is also useful to allow development when there is no set
of charged batteries available. For very long editing sessions, this method is the preferred
one as the development time is not limited by the batteries.

8.2 The Palmtop Environment

The PTV30 Palmtop PC together with the Anywhere DOS program is another
effective combination for the development of a mobile robot. The PTV30 Palmtop is a
small lightweight laptop PC powered by two rechargeable AA batteries. The keyboard is
small enough to allow touch-typing at about 75% of normal typing speed. The monitor is
a greyscale LCD with a 640×200 pixel resolution.

The palmtop is connected to the main PC through the serial line. The Anywhere DOS
program is run in the main PC background, while the Aterm DOS program is run on the
palmtop. The Anywhere program sends all text output from the main PC to the palmtop
through the serial line. The Aterm program then displays the text on the palmtop screen.
In addition, whatever is entered on the palmtop keyboard is sent to the main PC where it
is processed by the Anywhere program so that the data looks like a standard keyboard
input to the main PC.

97

This combination allows full text development in the sense that it allows software
editing and text output. Its main advantage over the tether method is that it does not
require a cable from the GuideCane to a fixed development station. Therefore, the testing
of the GuideCane is not restricted to a small development area anymore.

The main disadvantage of this system is that it does not allow graphical output like
maps or polar histograms. Another disadvantage is that the Anywhere program slightly
slows down the sampling rate of the main program.

8.3 The LCD Environment

For optimal development, graphic runtime output in color is necessary. However,
CRT monitors are too heavy to be carried around. They also require too much power. A
good alternative is the use of a color LCD which is much lighter and consumes much less
power than a CRT.

For editing, either the palmtop connected to the serial port of the PC or a small
standard keyboard can be used. The palmtop slightly slows down the sampling rate of the
PC and does not allow maximum speed typing. The small keyboard does not affect the
sampling rate and allows maximum speed typing, but it is a bit heavier and bigger than
the palmtop.

8.4 The GuideCane Simulator

To speed up the development process, a simulation of the GuideCane was written and
can be run under DOS. If used appropriately, the simulator can be a tremendous tool. As
there is neither noise nor any other random input, the simulated robot behaves the same
way on every run. This repeatability is extremely useful as it helps to understand specific
situations much better than with tests on a real robot where every run is different. The
simulator also allows the developer to stop a test run to verify variables. The simulation
can then be continued at normal speed or step by step.

However, simulations can be misleading, especially if they are used inappropriately.
The fact that a simulated robot performs well does not at all mean that the real robot will
do as well. Hence, a simulation should never replace experiments with a real robot.

On the other hand, a simulated robot that performs badly will likely not do well in
reality either. Hence, it is a good approach to get the robot's performance to a satisfying
degree in the simulation before implementing and improving it on the real robot. Another
advantage of the simulations is that new software routines can be debugged more easily.

The simulator can be loaded with different histogram maps. At each iteration, the
simulation updates the position and orientation of the robot dependent on the new
direction ϕn specified by the obstacle avoidance algorithm.

The simulation is only an approximation of the real GuideCane. The first
approximation is that the robot is already given a map with certainty values. Therefore,
the poor directionality and other problems of the sonars are neglected. In fact, this

98

simulator only tests the behavior of the obstacle avoidance. It does not test the sensor
routines at all, as this is better tested on the real robot.

The second approximation is the robot trajectory. There is no need for an exact
simulation of the robot trajectory. The input parameters for the robot trajectory are the
robot speed vt and the speed of the change of orientation vr. The current parameters are:

vt = 800 mm / s
vr = 90 ° / s

The change of the robot orientation based on the new steering command ϕn is then
approximated by:

∆θ ϕ θi n i= −

But this change of orientation is limited by the sampling interval T:

∆θmax *= v Tr

The orientation is updated by:

θ θ θi i i+ = +1 ∆ if ∆ ∆θ θi ≤ max

θ θ θi i+ = +1 max if ∆ ∆θ θi > max

θ θ θi i+ = −1 max if ∆ ∆θ θi < − max

The position is then updated by the following approximation:

x x v Ti i t
i i

+
+= +

+



1

1

2
* * cos

θ θ

y y v Ti i t
i i

+
+= −

+



1

1

2
* * sin

θ θ

99

9. Future Improvements

9.1 The Compass

The vehicle heading is the most significant of the three navigation parameters in terms
of its influence on accumulated dead-reckoning errors [11]. A magnetic compass would
be useful to keep the odometry orientation error bounded. The reliability of the compass
data should be good enough for improvements in the outdoor navigation. Indoors
however, the earth's magnetic field is often distorted near power lines or steel structures.

There are many small fluxgate compass modules commercially available. KVH
Industries offers a complete line of fluxgate compasses and related accessories [24]. The
C100 Compass Engine is a versatile low-cost developer's kit that includes a
microprocessor-controlled stand-alone fluxgate sensor subsystem based on a two-axis
toroidal ring-core sensor. Two different options are offered with this compass, limiting the
tilt range to either ±16° or ±45°. This compass can simply be connected to the PC through
the serial line.

The compass should be placed as far away from the GuideCane's electronics as
possible. The best place would probably be on the cane near the user's hand.

9.2 Computer Vision

The main problem of the GuideCane is currently the outdoor navigation, especially
sidewalk following. The problem is that the sonars are not able to detect the borders of a
sidewalk and hence, the GuideCane is not able to follow sidewalks.

An appropriate method to solve this problem is computer vision. Vision systems have
been developed that were capable of driving a car on a highway [35]. It should not be that
hard to implement a simplified version of such a system on the GuideCane. The sidewalk
following problem is easier than the road following problem because the speed of travel is
much smaller. It also requires less safety features. If the sidewalk following behavior
failed, the GuideCane may hit the side of the sidewalk which would instantly be perceived
by the user. The user could then bring it back on the sidewalk and try again with
hopefully more success. And due to the smaller speed, smaller masses and a friendlier
environment, crashes are not as disastrous as in the case of a road following system.

Computer Vision could also be used for other purposes, like landmark recognition.
Together with advanced speech output, it would even have the potential to read text on
signs to the user.

100

9.3 GPS - Global Navigation

The GuideCane can also be equipped with a Global Positioning System (GPS).
Several GPS systems have become commercially available. Some of these systems are
even in the PC/104 standard so that they can simply be stacked on top of the current PC.

Outdoors, standard GPS can currently provide global positioning information to
within 20 meters accuracy. This makes it possible for the blind individual to prescribe a
desired trajectory to a target location (e.g. the supermarket or the post office) to the
system and to have the GuideCane automatically guide the user to that location.
Alternatively, the system could learn a desired path by recording path segments during an
initial lead-through run with a sighted person.

Indoors, where GPS is not effective, the same path programming or lead-through
techniques can be used to have the GuideCane automatically guide the user to a desired
location, using dead-reckoning based on encoder and compass readings. This latter
method is not suitable for long distances because of the unbounded accumulation of
odometry errors, but it is suitable for shorter indoor paths.

An ongoing project that is based on GPS technology is the MoBIC project which is
supported by the Commission of the European Union [18]. The project goal is a route
planning system that allows a blind person to access electronic maps of the locality. It
also allows the user to access information from many sources such as bus and train
timetables.

The MoBIC system is complementary to the GuideCane. MoBIC can be used for the
global navigation while the GuideCane is used for the local navigation.

9.4 Speech Input/Output

A large variety of functions can be implemented with the help of speech output and/or
input. Speech output is much easier to implement than speech input. Speech output could
be implemented by adding a speaker and a speech synthesis processor from Texas
Instruments or a voice storage controller from TriTech to the current interface [34][36].
An even simpler, but more space consuming possibility would be to purchase a PC/104
speech and sound module.

Speech output would allow the GuideCane to give more information to the user. For
example, the GuideCane could ask the user to slow down. Or even more subtle, as the
GuideCane knows the length and the orientation of the cane, it knows where the user is
relative to its map and can so warn the user if he gets too close to an obstacle because of
the trailer effect. The GuideCane could even tell the user on which side he is getting too
close. Or in the case of a dead-end, the GuideCane could ask the user to back up until it
finds a new suitable direction. In short, speech output, if cautiously used, could be a very
valuable feature.

101

Speech input on the other hand may sound exciting, but the ratio of usefulness over
implementation difficulty is small compared to speech output. Currently, the main user
input is the desired direction of travel, which is entered through the pointer. It does not
make much sense to replace this input by speech input. It is much more convenient for
the user to communicate the desired direction through a standard input device than
through speech input. Even for other desired behaviors, like going through a narrow door,
it is more convenient to communicate by pressing a button than by speech input.
However, there are cases where speech input could be valuable.

9.5 Additional Sonars

With the current electronic system, six additional sonars can be connected to the main
interface. Additional sonars could be useful to detect overhanging obstacles, a hazard that
is feared most by white cane users. They could also be used to detect and find up-steps.

The more sonars the GuideCane is equipped with, the safer this robot becomes.
However, additional sonars increase the cost and the power consumption of the
GuideCane.

102

10. Conclusion

The GuideCane concept is revolutionary. This new device overcomes the fundamental
shortcomings of conventional electronic travel aids for the blind. It is easy to use and
requires little training time. The GuideCane does not simply tell the user the obstacle
information but directly delivers a guidance signal that is intuitive to follow.

The main physical result of this Master thesis is the realization of a fully autonomous
mobile robot. This embedded system is based on a total integration of the mechanical
structure, the electronic hardware, and the software.

The current mechanical structure performs well. However, a better structure based on
three wheels was proposed. This structure will be more stable, more comfortable to use,
more resistive to mechanical shocks and it will require a less power consuming servo. It
will also be equipped with three additional sonars which should improve the performance
of the obstacle avoidance.

The compact electronic hardware consists of a PC/104 computer and a multiprocessor
interface. This system performs well and is very reliable and efficient. Moreover, it was
designed in such a way that future extensions can easily be integrated into the current
system.

The software takes care of the interface, the odometry, the map building and scrolling,
and most importantly the obstacle avoidance algorithm. The parts that still need the most
improvements are the user-robot interface and special behaviors, like finding a door. Also,
several development environments were developed which should prove to be very useful
tools for this project in the future.

The main research result consists of the four improvements of the original VFH
method resulting in the VFH+ method. First of all, by using a hysteresis instead of a fixed
threshold, the robot trajectory becomes smoother. Secondly, the VFH+ takes explicitly in
account the robot size, so that this method can easily be applied to robots of different
sizes without time-consuming parameter adjusting. In addition, this improvement
eliminates the need of VFF so that the obstacle avoidance algorithm can be based solely
on VFH+. Thirdly, the VFH+ method takes in account the trajectory of the mobile robot
by masking free sectors that are blocked by obstacles in other sectors. As a result, the
robot can not be guided into an obstacle anymore, as it was possible with the original
VFH method. Finally, by applying a cost based direction selection, the performance of
the obstacle avoidance algorithm becomes better and more reliable. This also gives the
possibility of switching between behaviors by simply changing the cost function or its
parameters.

The second important research result is the identification of the extremely local nature
of both the VFH and the VFH+ algorithm. This problem is overcome by introducing local
planning into the obstacle avoidance algorithm. This planning is efficiently done with the
A* search algorithm, an appropriate cost function, and a heuristic function. VFH*, the
resulting obstacle avoidance algorithm, eliminates the shortcomings of the original VFH
method, yet it retains all advantages of its predecessor.

103

BIBLIOGRAPHY

[1] Bell, D., Borenstein, J., Levine, S.P., Koren, Y. and Jaros, L., “An Assistive Navigation
System for Wheelchairs Based upon Mobile Robot Obstacle Avoidance”, IEEE International
Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 2018-2022.

[2] Benjamin, J. M., Ali, N. A., and Schepis, A. F., “A Laser Cane for the Blind”, Proceedings of
the San Diego Biomedical Symposium, 1973, Vol. 12, pp. 53-57.

[3] Bissitt, D. and Heyes, A. D., “An Application of Biofeedback in the Rehabilitation of the
Blind”, Applied Ergonomics, 1980, Vol. 11, No. 1, pp. 31-33.

[4] Blasch, B. B., Long, R. G., and Griffin-Shirley, N., “National Evaluation of Electronic Travel
Aids for Blind and Visually Impaired Individuals: Implications for Design”, RESNA 12th Annual
Conference, New Orleans, Louisiana, 1989, pp. 133-134.

[5] Borenstein, J. and Feng, L., “Measurement and Correction of Systematic Odometry Errors
in Mobile Robots”, IEEE Transactions on Robotics and Automation, December 1996, pp.
869-880.

[6] Borenstein, J. and Koren, Y., “Error Eliminating Rapid Ultrasonic Firing for Mobile Robot
Obstacle Avoidance”, IEEE Transactions on Robotics and Automation, February 1995, Vol.
11, No. 1, pp. 132-138.

[7] Borenstein, J. and Koren, Y., “Histogramic In-Motion Mapping for Mobile Robot Obstacle
Avoidance”, IEEE Transactions on Robotics and Automation, August 1991, pp. 535-539.

[8] Borenstein, J. and Koren, Y., “Real-time Obstacle Avoidance for Fast Mobile Robots”,
Sept./Oct/ 1989, pp. 1179-1187.

[9] Borenstein, J. and Koren, Y., “The Vector Field Histogram - Fast Obstacle Avoidance for
Mobile Robots”, IEEE Journal of Robotics and Automation, June 1991, Vol. 7, No. 3, pp.
278-288.

[10] Borenstein, J. and Ulrich, I., “The GuideCane - A Computerized Travel Aid for the Active
Guidance of Blind Pedestrians”, IEEE Conference on Robotics and Automation,
Albuquerque, April 1997, pp xx - xx.

[11] Borenstein, J., Everett, H.R. and Feng, L., “Navigating Mobile Robots”, A K Peters, Ltd.,
1996.

[12] Brabyn, J. A., “New Developments in Mobility and Orientation Aids for the Blind”, IEEE
Transactions on Biomedical Engineering, 1982, Vol. BME-29, No. 4, pp. 285-289.

[13] Crowley, J. and Reignier, P., “Asynchronous Control of Rotation and Translation for a
Robot Vehicle”, Robotics and Autonomous Systems, 1992, Vol. 10, pp. 243-251.

[14] Dan, P., "Recent Advances in Rechargeable Batteries", Electronic Design, February 3,
1997, pp. 112-116.

[15] Elfes, A., “Using occupancy grids for mobile robot perception and navigation”, Computer
Magazine, June 1989, pp. 46-57.

104

[16] Feng, L., Borenstein, J. and Wehe, D., “A Completely Wireless Development System for
Mobile Robots”, ISRAM Conference, Montpellier, France, May 1996, pp. 277-282.

[17] Frye, B., "Rechargeable Power Options For Portable Computers", Electronic Design,
December 16, 1996, pp. 105-112.

[18] Gill, J., “An Orientation and Navigation System for Blind Pedestrians”, http://www.cs.uni-
magdeburg.de/~mobic, 1996.

[19] Guthrie, C., “Power-On Sequencing for Liquid Crystal Displays; Why, When, and How”,
Sharp LCD Application Note, pp. 2.1-2.9.

[20] Kay, L., “A Sonar Aid to Enhance Spatial Perception of the Blind: Engineering Design and
evaluation”, Radio and Electronic Engineer, 1974, Vol. 44, No. 11, pp. 605-627.

[21] Klarer, P.R., “Simple 2-D Navigation for Wheeled Vehicles”, Sandia Report SAND88-0540,
Sandia National Laboratories, Albuquerque, April 1988.

[22] Koren, Y., and Borenstein, J., “Analysis of Control Methods for Mobile Robot Obstacle
Avoidance”, IEEE International Workshop on Intelligent Motion Control, Istanbul, Turkey,
August 1990, pp. 457-462.

[23] Koren, Y., and Borenstein, J., “Potential Field Methods and Their Inherent Limitations for
Mobile Robot Navigation”, IEEE International Conference on Robotics and Automation,
Sacramento, California, April 1991, pp. 1398-1404.

[24] KVH Industries, C100 Compass Engine Product Literature, 110 Enterprise Center,
Middletown, RI 02840, 401-847-3327.

[25] Lebedev, V. V. and Sheiman, V. L., “Assessment of the Possibilities of Building an Echo
Locator for the Blind”, Telecommunications and Radio Engineering, 1980, Vol. 34-35, No. 3,
pp. 97-100.

[26] Linear Technology, "LT1529 - 3 A Low Dropout Voltage Regulators with Micropower
Quiescent Current and Shutdown", Product Literature, Linear Technology Corporation,
1630 McCarthy Blvd., Milpitas, CA 95035-7487, (408) 432 1900, 1996.

[27] Moravec, H.P., “Sensor fusion in certainty grids for mobile robots”, AI Magazine, summer
1988, pp. 61-74.

[28] Motorola, M68HC11 Reference Manual, 1991.

[29] PC/104 Consortium, “PC/104 Specification Version 2.3”, June 1996.

[30] Polaroid, "Ultrasonic Ranging System", Product Literature, Polaroid Corporation, 784
Memorial Drive, Cambridge, MA 02139, (617) 386 3964, 1991.

[31] Shoval, S., Borenstein, J., and Koren, Y., “Mobile Robot Obstacle Avoidance in a
Computerized Travel Aid for the Blind”, Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 2023-2029.

[32] Simmons, R., “The Curvature-Velocity Method for Local Obstacle Avoidance”, International
Conference on Robotics and Automation, Minneapolis, MN, April 1996.

105

[33] Stuart, R. and Norvig, P., “Artificial Intelligence - A Modern Approach”, Prentice-Hall, New
Jersey, 1995.

[34] Texas Instruments, "Speech Synthesis Processors", Product Literature, Texas Instruments
Incorporated, (810) 305 5700, 1996.

[35] Thorpe, C.E., “Vision and Navigation - The Carnegie Mellon Navlab”, Kluwer Academic
Publishers, Norwell, MA, 1990.

[36] TriTech, "Voice Storage Controller TR83100CF", Product Literature, TriTech
Microelectronics International Inc., 1400 McCandless Drive, Milpitas, CA 95035-8800,
(408) 894 1900, 1996.

[37] Wolfensberger, M. and Wright, D., “Synthesis of reflexive algorithms with intelligence for
effective robot path planning in unknown environments”, Proceeding of the 8th International
Conference on Mobile Robots, 1993, pp. 770-780.

[38] Wormald International Sensory Aids, 6140 Horseshoe Bar Rd., Loomis, CA 95650.

