|
||||||
Discorsi e dimostrazioni matematiche
Il Saggiatore
La Bilancetta
Le Mecaniche
Le Lettere
Sidereus Nuncius
Trattato fortificazione
Papers
meccanica
sistemi
robotica
Galileo Galilei
DISCORSI E DIMOSTRAZIONI MATEMATICHE
INTORNO A DUE NUOVE SCIENZE
ATTENENTI ALLA MECANICA & I MOVIMENTI LOCALI
GIORNATA SECONDA
Sagr. Stavamo, il Sig. Simplicio ed io, aspettando la venuta di V. S., e nel medesimo tempo ci andavamo riducendo a memoria l'ultima considerazione, che, quasi come principio e supposizione delle conclusioni che V. S. intendeva di dimostrarci, fu circa quella resistenza che hanno tutti i corpi solidi all'esser rotti, dependente da quel glutine che tiene le parti attaccate e congiunte, sì che non senza una potente attrazzione cedono e si separano. Si andò poi cercando qual potesse esser la causa di tal coerenza, che in alcuni solidi è gagliardissima, proponendosi principalmente quella del vacuo, che fu poi cagione di tante digressioni che ci tennero tutta la giornata occupati e lontani dalla materia primieramente intesa, che era, come ho detto, la contemplazione delle resistenze de i solidi all'essere spezzati.
Salv. Ben mi sovviene del tutto. E ritornando su 'l filo incominciato, posta qualunque ella sia la resistenza de i corpi solidi all'essere spezzati per una violenta attrazzione, basta che indubitabilmente ella in loro si trova; la quale, ben che grandissima contro alla forza di chi per diritto gli tira, minore per lo più si osserva nel violentargli per traverso: e così vegghiamo una verga, per esempio, d'acciaio o di vetro reggere per lo lungo il peso di mille libbre, che fitta a squadra in un muro si spezzerà con l'attaccargliene cinquanta solamente: e di questa seconda resistenza deviamo noi parlare, ricercando secondo quali proporzioni ella si ritrovi ne i prismi e cilindri simili o dissimili in figura e grossezza, essendo però dell'istessa materia. Nella quale specolazione io piglio come principio noto quello che nelle mecaniche si dimostra tra le passioni del vette, che noi chiamiamo leva, cioè che nell'uso della leva la forza alla resistenza ha la proporzion contraria di quella che hanno le distanze tra 'l sostegno e le medesime forza e resistenza.
Simp. Questo fu dimostrato da Aristotile, nelle sue Mecaniche, prima che da ogni altro.
Salv. Voglio che gli concediamo il primato nel tempo; ma nella fermezza della dimostrazione parmi che se gli deva per grand'intervallo anteporre Archimede, da una sola proposizione del quale, dimostrata da esso ne gli Equiponderanti, dependono le ragioni non solamente della leva, ma della maggior parte de gli altri strumenti mecanici.
Sagr. Ma già che questo principio è il fondamento di tutto quello che voi avete intenzione di volerci dimostrare, non sarebbe se non molto a proposito l'arrecarci anco la prova di tal supposizione, quando non sia materia molto prolissa, dandoci una intera e compita instruzzione.
Salv. Come questo si abbia a fare, sarà pur meglio che io per altro ingresso, alquanto diverso da quello d'Archimede, v'introduca nel campo di tutte le future specolazioni, e che non supponendo altro se non che pesi eguali posti in bilancia di braccia eguali facciano l'equilibrio (principio supposto parimente dal medesimo Archimede), io venga poi a dimostrarvi come non solamente altrettanto sia vero che pesi diseguali facciano l'equilibrio in stadera di braccia diseguali secondo la proporzione di essi pesi permutatamente sospesi, ma che l'istessa cosa fa colui che colloca pesi eguali in distanze eguali, che quello che colloca pesi diseguali in distanze che abbiano permutatamente la medesima proporzione che i pesi.
Or per chiara dimostrazione di quanto dico, segno un prisma o cilindro solido AB, sospeso dall'estremità alla linea HI, e sostenuto da due fili HA, IB: è manifesto, che se io sospenderò il tutto dal filo C, posto nel mezzo della bilancia HI, il prisma AB resterà equilibrato, essendo la metà del suo peso da una banda, e l'altra dall'altra, del punto della sospensione C, per il principio da noi supposto. Intendasi ora il prisma esser diviso in parti diseguali dal piano per la linea D, e sia la parte DA maggiore, e la DB minore; ed acciò che, fatta tal divisione, le parti del prisma restino nel medesimo sito e costituzione rispetto alla linea HI, soccorriamo con un filo ED, il quale, fermato nel punto E, sostenga le parti del prisma AD, DB; non è da dubitarsi che, non si essendo fatta veruna local mutazione nel prisma rispetto alla bilancia HI, ella resterà nel medesimo stato dell'equilibrio. Ma nella medesima costituzione resterà ancora se la parte del prisma che ora è sospesa dalle due estremità con li fili AH, DE, si appenda ad un sol filo GL, posto nel mezzo; e parimente l'altra parte DB non muterà stato sospesa dal mezzo e sostenuta dal filo FM: sciolti dunque i fili HA, ED, IB, e lasciati solo li due GL, FM, resterà l'istesso equilibrio, fatta pur sempre la sospensione dal punto C. Or qui voltiamoci a considerare come noi abbiamo due gravi AD, DB, pendenti da i termini G, F di una libra GF, nella quale si fa l'equilibrio dal punto C, in modo che la distanza della sospensione del grave AD dal punto C è la linea CG, e l'altra parte CF è la distanza dalla qual pende l'altro grave DB: resta dunque solo da dimostrarsi, tali distanze aver la medesima proporzione tra di loro che hanno gli stessi pesi, ma permutatamente presi, cioè che la distanza GC alla CF sia come il prisma DB al prisma DA; il che proveremo così. Essendo la linea GE la metà della EH, e la EF metà della EI, sarà tutta la GF metà di tutta la HI, e però eguale alla CI; e trattane la parte comune CF, sarà la rimanente GC eguale alla rimanente FI, cioè alla FE; e presa comunemente la CE, saranno le due GE, CF eguali: e però, come GE ad EF, così FC a CG; ma come GE ad EF, così la doppia alla doppia, cioè HE ad EI, cioè il prisma AD al prisma DB; adunque, per l'egual proporzione e convertendo, come la distanza GC alla distanza CF, così il peso BD al peso DA: che è quello che io volevo provarvi.
Inteso sin qui, non credo che voi porrete difficoltà in ammettere che i due prismi AD, DB facciano l'equilibrio dal punto C, perché la metà di tutto 'l solido AB è alla destra della sospensione C, e l'altra metà dalla sinistra, e che così si vengono a rappresentar due pesi eguali disposti e distesi in due distanze eguali. Che poi li due prismi AD, DB ridotti in due dadi, o in due palle, o in due qual'altre si siano figure (purché si conservino le sospensioni medesime G, F), seguitino di far l'equilibrio dal punto C, non credo che sia alcuno che ne possa dubitare, perché troppo manifesta cosa è che le figure non mutano peso, dove si ritenga la medesima quantità di materia. Dal che possiamo raccor la general conclusione, che due pesi, qualunque si siano, fanno l'equilibrio da distanze permutatamente respondenti alle lor gravità.
Stabilito dunque tal principio, avanti che passiamo più oltre devo metter in considerazione come queste forze, resistenze, momenti, figure, etc., si posson considerar in astratto e separate dalla materia, ed anco in concreto e congiunte con la materia; ed in questo modo quelli accidenti che converranno alle figure considerate come immateriali, riceveranno alcune modificazioni mentre li aggiugneremo la materia, ed in consequenza la gravità.
Come, per esempio, se noi intenderemo una leva, qual sarebbe questa BA, la quale, posando su 'l sostegno E, sia applicata per sollevare il grave sasso D, è manifesto, per il dimostrato principio, che la forza posta nell'estremità B basterà per adequare la resistenza del grave D, se il suo momento al momento di esso D abbia la medesima proporzione che ha la distanza AC alla distanza CB; e questo è vero, non mettendo in considerazione altri momenti che quelli della semplice forza in B e della resistenza in D, quasi che l'istessa leva fusse immateriale e senza gravità: ma se noi metteremo in conto la gravità ancora dello strumento stesso della leva, la quale sarà talor di legno e tal volta anco di ferro, è manifesto che, alla forza in B aggiunto il peso della leva, altererà la proporzione, la quale converrà pronunziare sotto altri termini. E però, prima che passar più oltre, è necessario che noi convenghiamo in por distinzione tra queste due maniere di considerare, chiamando un prendere assolutamente quello quando intenderemo lo strumento preso in astratto, cioè separato dalla gravità della propria materia; ma congiugnendo con le figure semplici ed assolute la materia, con la gravità ancora, nomineremo le figure congiunte con la materia momento o forza composta.
Sagr. È forza ch'io rompa il proposito che avevo di non dar occasione di digredire; ma non potrei con attenzione applicarmi al rimanente, se non mi fusse rimosso certo scrupolo che mi nasce; ed è questo: che mi pare che V. S. faccia comparazione della forza posta in B con la total gravità del sasso D, della qual gravità mi pare che una parte, e forse forse la maggiore, si appoggi sopra 'l piano dell'orizonte; sì che...
Salv. Ho inteso benissimo. V. S. non soggiunga altro ma solamente avverta che io non ho nominata la gravità totale del sasso, ma ho parlato del momento che egli tiene ed esercita sopra 'l punto A, estremo termine della leva BA; il quale è sempre minore dell'intero peso del sasso, ed è, variabile secondo la figura della pietra e secondo che ella vien più o meno sollevata.
Sagr. Resto appagato; ma mi nasce un altro desiderio, che è, che per intera cognizione mi fusse dimostrato il modo, se vi è, di poter investigare qual parte sia del peso totale quella che vien sostenuta dal soggetto piano, e quale quella che grava su 'l vette nell'estremità A.
Salv. Perché posso con poche parole dargli sodisfazzione, non voglio lasciar di servirla. Però, facendone un poco di figura,
intenda V. S. il peso il cui centro di gravità sia A, appoggiato sopra l'orizonte co 'l termine B, e nell'altro sia sostenuto col vette CG, sopra 'l sostegno N, da una potenza posta in G; e dal centro A e dal termine C caschino, perpendicolari all'orizzonte, AO, CF: dico, il momento di tutto il peso al momento della potenza in G aver la proporzion composta della distanza GN alla distanza NC e della FB alla BO. Facciasi, come la linea FB alla BO, così la NC alla X: ed essendo tutto il peso A sostenuto dalle due potenze poste in B e C, la potenza B alla C è come la distanza FO alla OB; e componendo, le due potenze B, C insieme, cioè il total momento di tutto 'l peso A, alla potenza in C è come la linea FB alla BO, cioè come la NC alla X: ma il momento della potenza in C al momento della potenza in G è come la distanza GN alla NC: adunque, per la perturbata, il total peso A al momento della potenza in G è come la GN alla X. Ma la proporzione di GN ad X è composta della proporzione di GN ad NC e di quella di NC ad X, cioè di FB a BO; adunque il peso A alla potenza che lo sostiene in G ha la proporzione composta della GN ad NC e di quella di FB a BO: ch'è quello che si doveva dimostrare.
Prop I |
Or tornando al nostro primo proposito, intese tutte le cose sin qui dichiarate, non sarà difficile l'intender la ragione onde avvenga che un prisma o cilindro solido, di vetro, acciaio, legno o altra materia frangibile, che sospeso per lungo sosterrà gravissimo peso che gli sia attaccato, ma in traverso (come poco fa dicevamo) da minor peso assai potrà tal volta essere spezzato, secondo che la sua lunghezza eccederà la sua grossezza.
Imperò che figuriamoci il prisma solido ABCD, fitto in un muro dalla parte AB, e nell'altra estremità s'intenda la forza del peso E (intendendo sempre, il muro esser eretto all'orizonte, ed il prisma o cilindro fitto nel muro ad angoli retti): è manifesto che, dovendosi spezzare, si romperà nel luogo B, dove il taglio del muro serve per sostegno, e la BC per la parte della leva dove si pone la forza; e la grossezza del solido BA è l'altra parte della leva, nella quale è posta la resistenza, che consiste nello staccamento che s'ha da fare della parte del solido BD, che è fuor del muro, da quella che è dentro: e per le cose dichiarate, il momento della forza posta in C al momento della resistenza, che sta nella grossezza del prisma cioè nell'attaccamento della base BA con la sua contigua, ha la medesima proporzione che la lunghezza CB alla metà della BA; e però l'assoluta resistenza all'esser rotto, che è nel prisma BD (la quale assoluta resistenza è quella che si fa col tirarlo per diritto, perché allora tanto è il moto del movente quanto quello del mosso), all'esser rotto con l'aiuto della leva BC, ha la medesima proporzione che la lunghezza BC alla metà di AB nel prisma, che nel cilindro è il semidiametro della sua base. E questa sia la nostra prima proposizione. E notate, che questo che dico, si debbe intendere, rimossa la considerazione del peso proprio del solido BD, il qual solido ho preso come nulla pesante: ma quando vorremo mettere in conto la sua gravità, congiugnendola col peso E, doviamo al peso E aggiugnere la metà del peso del solido BD; sì che essendo, v. g., il peso di BD due libbre, e 'l peso di E libbre dieci, si deve pigliare il peso E come se fusse undici.
Simp. E perché non come se fusse dodici?
Salv. Il peso E, Sig. Simplicio mio, pendente dal termine C, preme, in rispetto alla leva BC, con tutto 'l suo momento di libbre dieci; dove se fusse appeso il solo BD, graverebbe con tutto 'l momento di due libbre: ma, come vedete, tal solido è distribuito per tutta la lunghezza BC uniformemente, onde le parti sue vicine all'estremità B gravano manco delle più remote; sì che in somma, ristorando quelle con queste, il peso di tutto 'l prisma si riduce a lavorare sotto 'l centro della sua gravità, che risponde al mezzo della leva BC: ma un peso pendente dalla estremità C ha momento doppio di quello che arebbe pendendo dal mezzo: e però la metà del peso del prisma si deve aggiugnere al peso E, mentre ci serviamo del momento di amendue, come locati nel termine C.
Simp. Resto capacissimo; e di più, s'io non m'inganno, parmi che la potenza di amendue i pesi BD ed E, posti così, arebbe l'istesso momento che se tutto il peso di BD col doppio di E fusse appeso nel mezo della leva BC.
Prop II |
Salv. Così è precisamente, e si deve tenere a memoria. Qui possiamo immediatamente intender, come e con che proporzione resista più una verga, o vogliam dir prisma più largo che grosso, all'esser rotto, fattogli forza secondo la sua larghezza, che secondo la grossezza.
Per intelligenza di che, intendasi una riga ad, la cui larghezza sia ac, e la grossezza, assai minore, cb: si cerca perché, volendola romper per taglio, come nella prima figura, resisterà al gran peso T; ma posta per piatto, come nella seconda figura, non resisterà all'X, minore del T. Il che si fa manifesto, mentre intendiamo, il sostegno essere una volta sotto la linea bc, ed un'altra sotto la ca, e le distanze delle forze esser nell'un caso e nell'altro eguali, cioè la lunghezza bd; ma nel primo caso la distanza della resistenza dal sostegno, che è la metà della linea ca, è maggiore della distanza nell'altro caso, la quale è la metà della bc; però la forza del peso T conviene che sia maggiore della X quanto la metà della larghezza ca è maggiore della metà della grossezza bc, servendoci quella per contralleva della ca, e questa della cb, per superare la medesima resistenza, che è la quantità delle fibre di tutta la base ab. Concludesi per tanto, la medesima riga o prisma più largo che grosso resister più all'esser rotto per taglio che per piatto, secondo la proporzione della larghezza alla grossezza.
Prop III |
Conviene ora che cominciamo a investigare secondo qual proporzione vadia crescendo il momento della propria gravità, in relazione alla propria resistenza all'essere spezzato in un prisma o cilindro, mentre, stando parallelo all'orizonte, si va allungando; il qual momento trovo andar crescendo in duplicata proporzione di quella dell'allungamento.
Per la cui dimostrazione, intendasi il prisma o cilindro AD fitto saldamente nel muro dall'estremità A, e sia equidistante all'orizonte; ed il medesimo intendasi allungato sino in E, aggiugnendovi la parte BE. È manifesto che l'allungamento della leva AB sino in C cresce per sé solo, cioè assolutamente preso, il momento della forza premente contro alla resistenza dello staccamento e rottura da farsi in A secondo la proporzione di CA e BA: ma, oltre a questo, il peso aggiunto del solido BE al peso del solido AB cresce il momento della gravità premente secondo la proporzione del prisma AE al prisma AB, la qual proporzione è la medesima della lunghezza AC alla AB: adunque è manifesto che, congiunti i due accrescimenti delle lunghezze e delle gravità, il momento composto di amendue è in doppia proporzione di qualunque di esse. Concludasi per tanto, i momenti delle forze de i prismi e cilindri egualmente grossi, ma disegualmente lunghi, esser tra di loro in duplicata proporzione di quella delle lor lunghezze, cioè esser come i quadrati delle lunghezze.
Mostreremo adesso, nel secondo luogo, secondo qual proporzione cresca la resistenza all'essere spezzati ne i prismi e cilindri, mentre restino della medesima lunghezza e si accresca la grossezza. E qui dico che:
Prop IV |
Ne i prismi e cilindri egualmente lunghi, ma disegualmente grossi, la resistenza all'esser rotti cresce in triplicata proporzione de i diametri delle lor grossezze, cioè delle lor basi.
I due cilindri siano questi A, B; le cui lunghezze eguali, DG, FH; le basi diseguali, i cerchi i cui diametri CD, EF: dico, la resistenza del cilindro B alla resistenza del cilindro A, ad esser rotti, aver triplicata proporzione di quella che ha il diametro FE al diametro DC. Imperò che, se consideriamo l'assoluta e semplice resistenza che risiede nelle basi, cioè ne i cerchi EF, DC, all'essere strappati facendogli forza col tirargli per diritto, non è dubbio che la resistenza del cilindro B è tanto maggiore che quella del cilindro A, quanto il cerchio EF è maggiore del CD, perché tante più sono le fibre, i filamenti o le parti tenaci, che tengono unite le parti de i solidi. Ma se consideriamo che nel far forza per traverso ci serviamo di due leve, delle quali le parti o distanze dove si applicano le forze sono le linee DG, FH, i sostegni sono ne' punti D, F, ma le altre parti o distanze dove son poste le resistenze sono i semidiametri de i cerchi DC, EF, perché i filamenti sparsi per tutte le superficie de i cerchi è come se tutti si riducessero ne i centri; considerando, dico, tali leve, intenderemo, la resistenza nel centro della base EF contro alla forza di H esser tanto maggiore della resistenza della base CD contro alla forza posta in G (e sono le forze in G ed H di leve uguali DG, FH), quanto il semidiametro FE è maggiore del semidiametro DC. Cresce dunque la resistenza all'esser rotto nel cilindro B sopra la resistenza del cilindro A secondo amendue le proporzioni de i cerchi EF, DC e de i lor semidiametri, o vogliam dir diametri: ma la proporzione de i cerchi è doppia di quella de i diametri: adunque la proporzione delle resistenze, che di quelle si compone, è triplicata della proporzione de i medesimi diametri: che è quello che dovevo provare. Ma perché anco i cubi sono in tripla proporzione de i loro lati, possiamo similmente concludere, le resistenze de i cilindri egualmente lunghi esser tra di loro come i cubi de i lor diametri.
Corol. |
Da questo che si è dimostrato possiamo concludere ancora, le resistenze de i prismi e cilindri egualmente lunghi aver sesquialtera proporzione di quella de gli stessi cilindri. Il che è manifesto: perché i prismi e cilindri egualmente alti hanno fra di loro la medesima proporzione che le lor basi, cioè doppia de i lati o diametri di esse basi; ma le resistenze (come si è dimostrato) hanno triplicata proporzione de i medesimi lati o diametri; adunque la proporzione delle resistenze è sesquialtera della proporzione de gli stessi solidi, ed in consequenza de i pesi de i medesimi solidi.
Simp. Egli è forza che, avanti che si proceda più oltre, io resti sincerato di certa mia difficoltà. E questa è, che sin qui non ho sentito mettere in considerazione cert'altra sorte di resistenza, la quale mi par che venga diminuita ne i solidi secondo che si vanno più e più allungando, e non solo nell'uso trasversale, ma ancora per lo lungo; in quel modo appunto che veggiamo, una corda lunghissima esser molto meno atta a reggere un gran peso, che se fusse corta: onde io credo che una verga di legno o di ferro più peso assai potrà reggere se sarà corta, che se sarà molto lunga; intendendo sempre usata per lo lungo, e non in traverso, ed anco messo in conto il suo proprio peso, che nella più lunga è maggiore.
Salv. Dubito, Sig. Simplicio, che in questo punto voi, con molti altri, v'inganniate, se però ho ben compreso il vostro concetto, sì che voi vogliate dire che una corda lunga, v. g., quaranta braccia non possa sostenere tanto peso, quanto se fusse un braccio o due della medesima corda.
Simp. Cotesto ho voluto dire, e sin qui mi par proposizione assai probabile.
Salv. Ma io l'ho per falsa, non che per improbabile; e credo di potervi assai agevolmente cavar d'errore.
Però ponghiamo questa corda AB, fermata di sopra dal capo A, e dall'altro sia il peso C, dalla cui forza debba essa corda essere rotta: assegnatemi voi, Sig. Simplicio, il luogo particolare dove debba seguir la rottura.
Simp. Sia nel luogo D.
Salv. Vi domando qual sia la cagione dello strapparsi in D.
Simp. È la causa di ciò, perché la corda in quella parte non era potente a reggere, v. g., cento libbre di peso, quanto è la parte DB con la pietra C.
Salv. Adunque, tutta volta che tal corda nella parte D venisse violentata dalle medesime cento libbre di peso, ella li si strapperebbe.
Simp. Così credo.
Salv. Ma ditemi ora: chi attaccasse il medesimo peso non al fine della corda B, ma vicino al punto D, come sarebbe in E, o vero legasse la corda non nella altezza A, ma più vicina e sopra al punto medesimo D, come sarebbe in F, ditemi, dico, se il punto D sentirebbe il medesimo peso delle cento libbre.
Simp. Sentirebbelo, accompagnando però il pezzo di corda EB con la pietra C.
Salv. Se dunque la corda nel punto D vien tirata dalle medesime cento libbre di peso, si romperà, per la vostra concessione: e pure la FE è un piccol pezzo della lunga AB; come dunque volete più dire che la corda lunga sia più debole della corta? Contentatevi dunque d'esser cavato d'un errore nel quale avete auto molti compagni, ed anco per altro molto intelligenti, e seguitiamo innanzi. Ed avendo dimostrato, i prismi e cilindri crescere il lor momento sopra le proprie resistenze secondo i quadrati delle lunghezze loro (mantenendo però sempre la medesima grossezza); e parimente, gli egualmente lunghi, ma differenti in grossezza, crescer le lor resistenze secondo la proporzione de i cubi de i lati o diametri delle lor basi, passiamo a investigare quello che accaggia a tali solidi differenti in lunghezza e grossezza insieme. Ne i quali io osservo che:
Prop. V |
I prismi e cilindri di diversa lunghezza e grossezza hanno le lor resistenze all'esser rotti di proporzione composta della proporzione de i cubi de' diametri delle lor basi e della proporzione delle lor lunghezze permutatamente prese.
Siano tali due cilindri ABC, DEF: dico, la resistenza del cilindro AC alla resistenza del cilindro DF aver la proporzione composta della proporzione del cubo del diametro AB al cubo del diametro DE e della proporzione della lunghezza EF alla lunghezza BC. Pongasi la EG eguale alla BC, e delle linee AB, DE sia terza proporzionale la H, e quarta la I, e come la EF alla BC così sia la I alla S. E perché la resistenza del cilindro AC alla resistenza del cilindro DG è come il cubo AB al cubo DE, cioè come la linea AB alla linea I; e la resistenza del cilindro DG alla resistenza del cilindro DF come la lunghezza FE alla EG, cioè come la linea I alla S; adunque, per l'egual proporzione come la resistenza del cilindro AC alla resistenza del cilindro DF, così la linea AB alla S: ma la linea AB alla S ha la proporzion composta della AB alla I e della I alla S: adunque la resistenza del cilindro AC alla resistenza del cilindro DF ha la proporzion composta della AB alla I, cioè del cubo di AB al cubo di DE, e della proporzione della linea I alla S, cioè della lunghezza EF alla lunghezza BC: che è quello che intendevo di dimostrare.
Dopo la dimostrata proposizione, voglio che consideriamo quello che accaggia tra i cilindri e prismi simili: de i quali dimostreremo come:
Prop. VI |
De i cilindri e prismi simili i momenti composti, cioè risultanti dalle lor gravità e dalle loro lunghezze, che sono come leve, hanno tra di loro proporzione sesquialtera di quella che hanno le resistenze delle medesime lor basi.
Per il che dimostrare, segniamo i due cilindri simili AB, CD: dico, il momento del cilindro AB per superare la resistenza della sua base B, al momento di CD per superare la resistenza della sua D, aver sesquialtera proporzione di quella che ha la medesima resistenza della base B alla resistenza della base D. E perché i momenti de i solidi AB, CD per superar le resistenze delle lor basi B, D son composti delle lor gravità e delle forze delle lor leve, e la forza della leva AB è eguale alla forza della leva CD (e questo perché la lunghezza AB al semidiametro della base B ha la medesima proporzione, per la similitudine de' cilindri, che la lunghezza CD al semidiametro della base D), resta che 'l momento totale del cilindro AB al momento totale di CD sia come la sola gravità del cilindro AB alla sola gravità del cilindro CD, cioè come l'istesso cilindro AB all'istesso CD; ma questi sono in triplicata proporzione de i diametri delle basi loro B, D; e le resistenze delle medesime basi, essendo tra di loro come l'istesse basi, sono, in consequenza, in duplicata proporzione de i medesimi loro diametri: adunque i momenti de i cilindri son in sesquialtera proporzione delle resistenze delle basi loro.
Simp. Questa proposizione mi è veramente giunta non solamente nuova, ma inaspettata, e nel primo aspetto assai remota dal giudizio che io ne averei conietturalmente fatto: imperò che, essendo tali figure in tutto 'l restante simili, arei tenuto per fermo che anco i momenti loro verso le proprie resistenze avessero ritenuta la medesima proporzione.
Sagr. Questa è la dimostrazione di quella proposizione, che nel principio de' nostri ragionamenti dissi parermi di scorger per ombra.
Salv. Quello che ora accade al Sig. Simplicio, avvenne per alcun tempo a me, credendo che le resistenze di solidi simili fusser simili, sin che certa, né anco molto fissa o accurata, osservazione mi pareva rappresentarmi, ne i solidi simili non mantenersi un tenore eguale nelle loro robustezze, ma i maggiori esser meno atti a patire gl'incontri violenti, come rimaner più offesi dalle cadute gli uomini grandi che i piccoli fanciulli; e, come da principio dicevamo, cadendo dalla medesima altezza vedesi andare in pezzi una gran trave o una colonna, ma non così un piccolo corrente o un piccol cilindro di marmo. Questa tal quale osservazione mi destò la mente all'investigazione di quello che ora son per dimostrarvi: proprietà veramente ammirabile, poiché tra le infinite figure solide simili tra di loro, pur due non ve ne sono, i momenti delle quali verso le proprie resistenze ritenghino la medesima proporzione.
Simp. Ora mi fate sovvenire non so che, posto da Aristotele tra le sue Quistioni Mecaniche, mentre vuol render la ragione onde avvenga che i legni, quanto più son lunghi, tanto più son deboli e più si piegano, ben che i più corti sieno più sottili, e i lunghi più grossi; e se io ben mi ricordo, ne riduce la ragione alla semplice leva.
Salv. È verissimo: e perché la soluzione non par che tolga interamente la ragion del dubitare, Monsig. di Guevara, il quale veramente con i suoi dottissimi comentarii ha altamente nobilitata e illustrata quell'opera, si estende con altre più acute specolazioni per sciorre tutte le difficoltà, restando però esso ancora perplesso in questo punto, se crescendosi con la medesima proporzione le lunghezze e le grossezze di tali solide figure, si deva mantenere l'istesso tenore nelle loro robustezze e resistenze nell'esser rotte ed anco nel piegarsi. Io, dopo un lungo pensarvi, ho in questa materia ritrovato quello che seguentemente son per apportarvi. E prima dimostrerò che:
Prop. VII |
De i prismi o cilindri simili gravi, un solo e unico è quello che si riduce (gravato dal proprio peso) all'ultimo stato tra lo spezzarsi e 'l sostenersi intero: sì che ogni maggiore, come impotente a resistere al proprio peso, si romperà; e ogni minore resiste a qualche forza che gli venga fatta per romperlo.
Sia il prisma grave AB ridotto alla somma lunghezza di sua consistenza, sì che allungato un minimo di più si rompesse: dico, questo esser unico tra tutti i suoi simili (che pur sono infiniti); atto ad esser ridotto in tale stato ancipite; sì che ogni maggiore, oppresso dal proprio peso, si spezzerà, ed ogni minore no, anzi potrà resistere a qualche aggravio di nuova violenza, oltre a quella del proprio peso. Sia prima il prisma CE, simile e maggiore di AB: dico, questo non poter consistere, ma rompersi, superato dalla propria gravità. Pongasi la parte CD lunga quanto AB: e perché la resistenza di CD a quella di AB è come il cubo della grossezza di CD al cubo della grossezza di AB, cioè come il prisma CE al prisma AB (essendo simili), adunque il peso di CE è il sommo che possa esser sostenuto nella lunghezza del prisma CD; ma la lunghezza CE è maggiore; adunque il prisma CE si romperà. Ma sia FG minore: si dimostrerà similmente (posta FH eguale alla BA), la resistenza di FG a quella di AB esser come il prisma FG al prisma AB, quando la distanza AB, cioè FH, fusse eguale alla FG; ma è maggiore; adunque il momento del prisma FG posto in G non basta per romper il prisma FG.
Sagr. Chiarissima e breve dimostrazione, concludente la verità e necessità di una proposizione che, nel primo aspetto, sembra assai remota dal verisimile. Bisognerebbe dunque alterare assai la proporzione tra la lunghezza e la grossezza del prisma maggiore, con l'ingrossarlo o scorciarlo, acciò si riducesse allo stato ancipite tra 'l reggersi e lo spezzarsi; e l'investigazione di tale stato penso che potesse esser altrettanto ingegnosa.
Salv. Anzi più presto d'avvantaggio, come anco più laboriosa; ed io lo so, che vi spesi non piccol tempo per ritrovarla, ed ora voglio participarvela.
Prop. VIII |
Dato dunque un cilindro o prisma di massima lunghezza da non esser dal suo proprio peso spezzato, e data una lunghezza maggiore, trovar la grossezza d'un altro cilindro o prisma che sotto la data lunghezza sia l'unico e massimo resistente al proprio peso.
Sia il cilindro BC massimo resistente al proprio peso, e sia la DE lunghezza maggiore della AC: bisogna trovare la grossezza del cilindro che sotto la lunghezza DE sia il massimo resistente al proprio peso. Sia delle lunghezze DE, AC terza proporzionale I, e come DE ad I, così sia il diametro FD al diametro BA, e facciasi il cilindro FE; dico, questo esser il massimo ed unico, tra tutti i suoi simili, resistente al proprio peso. Delle linee DE, I sia terza proporzionale M, e quarta O, e pongasi FG eguale alla AC: e perché il diametro FD al diametro AB è come la linea DE alla I, e delle DE, I la O è quarta proporzionale, il cubo di FD al cubo di BA sarà come la DE alla O; ma come il cubo di FD al cubo di BA, così è la resistenza del cilindro DG alla resistenza del cilindro BC; adunque la resistenza del cilindro DG a quella del cilindro BC è come la linea DE alla O. E perché il momento del cilindro BC è eguale alla sua resistenza, se si mostrerà, il momento del cilindro FE al momento del cilindro BC esser come la resistenza DF alla resistenza BA, cioè come il cubo di FD al cubo di BA, cioè come la linea DE alla O, aremo l'intento, cioè il momento del cilindro FE esser eguale alla resistenza posta in FD. Il momento del cilindro FE al momento del cilindro DG è come il quadrato della DE al quadrato della AC, cioè come la linea DE alla I; ma il momento del cilindro DG al momento del cilindro BC è come il quadrato DF al quadrato BA, cioè come il quadrato di DE al quadrato della I, cioè come il quadrato della I al quadrato della M, cioè come la I alla O; adunque, per l'egual proporzione, come il momento del cilindro FE al momento del cilindro BC, così è la linea DE alla O, cioè il cubo DF al cubo BA, cioè la resistenza della base DF alla resistenza della base BA: che è quello che si cercava.
Sagr. Questa, Sig. Salviati, è una lunga dimostrazione, e molto difficile a ritenersi a memoria per sentirla una sola volta; onde io vorrei che V. S. si contentasse di replicarla di nuovo.
Salv. Farò quanto V. S. comanda; ma forse sarebbe meglio arrecarne una più speditiva e breve: ma converrà fare una figura alquanto diversa.
Sagr. Maggiore sarà il favore; e la già dichiarata mi farà grazia darmela scritta, acciò a mio bell'agio possa ristudiarla.
Salv. Non mancherò di servirla.
Ora intendiamo un cilindro A, il diametro della cui base sia la linea DC, e sia questo A il massimo che possa sostenersi; del quale vogliamo trovare un maggiore, che pur sia il massimo esso ancora ed unico che si sostenga. Intendiamone un simile ad esso A e lungo quanto la linea assegnata, e questo sia, v. g., E, il diametro della cui base sia la KL, e delle due linee DC, KL sia terza proporzionale la MN, che sia diametro della base del cilindro X, di lunghezza eguale all'E: dico, questo X esser quello che cerchiamo. E perché la resistenza DC alla resistenza KL è come il quadrato DC al quadrato KL, cioè come il quadrato KL al quadrato MN, cioè come il cilindro E al cilindro X, cioè come il momento E al momento X; ma la resistenza KL alla MN è come il cubo di KL al cubo di MN, cioè come il cubo DC al cubo KL, cioè come il cilindro A al cilindro E, cioè come il momento A al momento E; adunque, per l'analogia perturbata, come la resistenza DC alla MN, così il momento A al momento X: adunque il prisma X è nella medesima costituzione di momento e resistenza che il prisma A.
Ma voglio che facciamo il problema più generale; e la proposizione sia questa:
Dato il cilindro AC, qualunque si sia il suo momento verso la sua resistenza, e data qual si sia lunghezza DE, trovar la grossezza del cilindro, la cui lunghezza sia DE, e 'l suo momento verso la sua resistenza ritenga la medesima proporzione che il momento del cilindro AC alla sua.
Ripresa l'istessa figura di sopra e quasi l'istesso progresso, diremo: perché il momento del cilindro FE al momento della parte DG ha la medesima proporzione che il quadrato ED al quadrato FG, cioè che la linea DE alla I; ed il momento del cilindro FG al momento del cilindro AC è come il quadrato FD al quadrato AB, cioè come il quadrato DE al quadrato I, cioè come il quadrato I al quadrato M, cioè come la linea I alla O; adunque ex æquali, il momento del cilindro FE al momento del cilindro AC ha la medesima proporzione della linea DE alla O, cioè del cubo DE al cubo I, cioè del cubo di FD al cubo di AB, cioè della resistenza della base FD alla resistenza della base AB: ch'è quello che si doveva fare.
Or vegghino come dalle cose sin qui dimostrate apertamente si raccoglie l'impossibilità del poter non solamente l'arte, ma la natura stessa, crescer le sue macchine a vastità immensa: sì che impossibil sarebbe fabbricar navilii, palazzi o templi vastissimi, li cui remi, antenne, travamenti, catene di ferro, ed in somma le altre lor parti, consistessero; come anco non potrebbe la natura far alberi di smisurata grandezza, poiché i rami loro, gravati dal proprio peso, finalmente si fiaccherebbero; e parimente sarebbe impossibile far strutture di ossa per uomini, cavalli o altri animali, che potessero sussistere e far proporzionatamente gli uffizii loro, mentre tali animali si dovesser agumentare ad altezze immense, se già non si togliesse materia molto più dura e resistente della consueta, o non si deformassero tali ossi, sproporzionatamente ingrossandogli, onde poi la figura ed aspetto dell'animale ne riuscisse mostruosamente grosso: il che forse fu avvertito dal mio accortissimo Poeta, mentre descrivendo un grandissimo gigante disse:
Non si può compatir quanto sia lungo,
Sì smisuratamente è tutto grosso.
E per un breve esempio di questo che dico, disegnai già la figura di un osso allungato solamente tre volte, ed ingrossato con tal proporzione, che potesse nel suo animale grande far l'uffizio proporzionato a quel dell'osso minore nell'animal più piccolo, e le figure son queste:
dove vedete sproporzionata figura che diviene quella dell'osso ingrandito. Dal che è manifesto, che chi volesse mantener in un vastissimo gigante le proporzioni che hanno le membra in un uomo ordinario, bisognerebbe o trovar materia molto più dura e resistente, per formarne l'ossa, o vero ammettere che la robustezza sua fusse a proporzione assai più fiacca che ne gli uomini di statura mediocre; altrimente, crescendogli a smisurata altezza, si vedrebbono dal proprio peso opprimere e cadere. Dove che, all'incontro, si vede, nel diminuire i corpi non si diminuir con la medesima proporzione le forze, anzi ne i minimi crescer la gagliardia con proporzion maggiore: onde io credo che un piccolo cane porterebbe addosso due o tre cani eguali a sé, ma non penso già che un cavallo portasse né anco un solo cavallo, a se stesso eguale.
Simp. Ma se così è, grand'occasione mi danno di dubitare le moli immense che vediamo ne i pesci; ché tal balena, per quanto intendo, sarà grande per dieci elefanti; e pur si sostengono.
Salv. Il vostro dubbio, Sig. Simplicio, mi fa accorgere d'una condizione da me non avvertita prima, potente essa ancora a far che giganti ed altri animali vastissimi potessero consistere e agitarsi non meno che i minori: e ciò seguirebbe quando non solo si aggiugnesse gagliardia all'ossa ed all'altre parti, offizio delle quali è il sostener il proprio e 'l sopravegnente peso; ma, lasciata la struttura delle ossa con le medesime proporzioni, pur nell'istesso modo, anzi più agevolmente, consisterebbono le medesime fabbriche quando con tal proporzione si diminuisse la gravità della materia delle medesime ossa, e quella della carne o di altro che sopra l'ossa si abbia ad appoggiare. E di questo secondo artifizio si è prevalsa la natura nella fabbrica de i pesci, facendogli le ossa e le polpe non solamente assai leggiere, ma senza veruna gravità.
Simp. Veggo bene, Sig. Salviati, dove tende il vostro discorso: voi volete dire, che per esser l'abitazione de i pesci l'elemento dell'acqua, la quale per la sua corpulenza, o, come altri vogliono, per la sua gravità, scema il peso a i corpi che in quella si demergono, per tal ragione la materia de i pesci, non pesando, può senza aggravio dell'ossa loro esser sostenuta. Ma questo non basta; perché quando bene il resto della sustanza del pesce non graviti, grava però senza dubbio la materia dell'ossa loro. E chi dirà che una costola di balena, grande quanto una trave, non pesi assaissimo, e nell'acqua non vadia al fondo? Queste dunque non deveriano poter sussistere in sì vasta mole.
Salv. Voi acutamente opponete: e per risposta al vostro dubbio, ditemi se avete osservato stare i pesci, quando piace loro, sott'acqua immobili, e non descendere verso 'l fondo o sollevarsi alla superficie senza far qualche forza col nuoto?
Simp. Questa è chiarissima osservazione.
Salv. Questo, dunque, potersi i pesci fermare come immobili a mezz'acqua è concludentissimo argomento, il composto della lor mole corporea agguagliar la gravità in spezie dell'acqua; sì che se in esso si trovano alcune parti più gravi dell'acqua, necessariamente bisogna che ve ne siano altre altrettanto men gravi, acciò si possa pareggiar l'equilibrio. Se dunque le ossa son più gravi, è necessario che le polpe, o altre materie che vi siano, sien più leggiere, e queste si opporranno con la lor leggerezza al peso dell'ossa: talché ne gli acquatici avverrà l'opposito di quel che accade ne gli animali terrestri, cioè che in questi tocchi all'ossa a sostenere il peso proprio e quel della carne, e in quelli la carne regga la gravezza propria e quella dell'ossa. E però deve cessar la maraviglia, come nell'acqua possano essere animali vastissimi, ma non sopra la terra, cioè nell'aria.
Simp. Resto appagato; e di più noto che questi, che noi addimandiamo animali terrestri, più ragionevolmente si devrebbero dimandar aerei, perché nell'aria veramente vivono, e dall'aria son circondati e dell'aria respirano.
Sagr. Piacemi il discorso del Sig. Simplicio, col suo dubbio e con la soluzione: e di più comprendo assai facilmente che uno di questi smisurati pesci, tirato in terra, forse non si potrebbe per lungo tempo sostenere, ma che, relassate le attaccature dell'ossa, la sua mole si ammaccherebbe.
Salv. Io per ora inclino a creder l'istesso; né son lontano a credere che 'l medesimo avverrebbe a quel vastissimo navilio il quale, galleggiando in mare, non si dissolve per il peso e carico di tante merci ed armamenti, che in secco e circondato dall'aria forse si aprirebbe. Ma seguitiamo la nostra materia, e dimostriamo come:
Dato un prisma o cilindro col suo peso, ed il peso massimo sostenuto da esso, si possa trovare la massima lunghezza, oltre alla quale prolungato, dal solo suo proprio peso si romperebbe.
Sia dato il prisma AC col suo proprio peso, e dato parimente il peso D, massimo da poter esser sostenuto dall'estremità C: bisogna trovare la lunghezza massima sino alla quale si possa allungare il detto prisma senza rompersi. Facciasi, come il peso del prisma AC al composto de i pesi AC col doppio del peso di D, così la lunghezza CA alla AH, tra le quali sia media proporzionale la AG: dico, AG esser la lunghezza cercata. Imperò che il momento gravante del peso D in C è eguale al momento del peso doppio di D che fusse posto nel mezo di AC, dove è anco il centro del momento del prisma AC; il momento dunque della resistenza del prisma AC, che sta in A, equivale al gravante del doppio del peso D col peso AC, attaccati però nel mezo di AC. E perché viene ad essersi fatto, come 'l momento di detti pesi così situati, cioè del doppio D con AC, al momento di AC, così la HA alla AC, tra le quali è media la AG, adunque il momento del doppio D col momento AC al momento AC è come il quadrato GA al quadrato AC: ma il momento premente del prisma GA al momento di AC è come il quadrato GA al quadrato AC: adunque la lunghezza AG è la massima che si cercava, cioè quella sino alla quale allungandosi il prisma AC si sosterrebbe, ma più oltre si spezzerebbe.
Sin qui si son considerati i momenti e le resistenze de i prismi e cilindri solidi, l'una estremità de i quali sia posta immobile, e solo nell'altra sia applicata la forza di un peso premente, considerandolo esso solo, o ver congiunto con la gravità del medesimo solido, o veramente la sola gravità dell'istesso solido: ora voglio che discorriamo alquanto de i medesimi prismi e cilindri quando fussero sostenuti da amendue l'estremità, o vero che sopra un sol punto, preso tra le estremità, fusser posati. E prima dico, che il cilindro che gravato dal proprio peso sarà ridotto alla massima lunghezza, oltre alla quale più non si sosterrebbe, o sia retto nel mezo da un solo sostegno o vero da due nelle estremità, potrà esser lungo il doppio di quello che sarebbe, fitto nel muro, cioè sostenuto in un sol termine.
Il che per se stesso è assai manifesto perché se intenderemo, del cilindro che io segno ABC, la sua metà AB esser la somma lunghezza potente a sostenersi stando fissa nel termine B, nell'istesso modo si sosterrà se, posata sopra 'l sostegno G, sarà contrappesata dall'altra sua metà BC. E similmente, se del cilindro DEF la lunghezza sarà tale, che solamente la sua metà potesse sostenersi fissa nel termine D, ed in consequenza l'altra EF fissa nel termine F, è manifesto che posti i sostegni H, I sotto l'estremità D, F, ogni momento che si aggiunga di forza o di peso in E, quivi si farà la rottura.
Quello che ricerca più sottile specolazione è quando, astraendo dalla gravità di tali solidi, ci fusse proposto di dovere investigare se quella forza o peso che, applicato al mezo d'un cilindro sostenuto nelle estremità, basterebbe a romperlo, potrebbe far l'istesso effetto applicato in qualsivoglia altro luogo, più vicino all'una che all'altra estremità: come, per esempio, se volendo noi rompere una mazza, presola con le mani nell'estremità ed appuntato il ginocchio in mezo, l'istessa forza che basterebbe usare per romperla in tal modo, basterebbe ancora quando il ginocchio si puntasse non nel mezzo, ma più vicino all'un de gli estremi.
Sagr. Parmi che 'l problema sia toccato da Aristotele nelle sue Questioni Mecaniche.
Salv. Il quesito d'Aristotele non è precisamente l'istesso, perché ei non cerca altro, se non di render la ragione perché manco fatica si ricerchi a romperlo tenendo le mani nell'estremità del legno, cioè remote assai dal ginocchio, che se le tenessimo vicine: e ne rende una ragione generale, riducendo la causa alle leve più lunghe, quando s'allargano le braccia afferrando l'estremità. Il nostro quesito aggiugne qualche cosa di più, ricercando se, posto il ginocchio nel mezo o in altro luogo, tenendo pur le mani sempre nell'estremità, la medesima forza serva in tutti i siti.
Sagr. Nella prima apprensione parrebbe di sì, atteso che le due leve mantengono in certo modo il medesimo momento, mentre che, quanto si scorcia l'una, tanto s'allunga l'altra.
Salv. Or vedete quanto sono in pronto l'equivocazioni, e con quanta cautela e circospezione convien andare per non v'incorrere. Cotesto che voi dite, e che veramente nel primo aspetto ha tanto del verisimile, in ristretto poi è tanto falso, che quando il ginocchio, che è il fulcimento delle due leve, sia posto o non posto nel mezo, fa tal diversità, che di quella forza che basterebbe per far la frazzione nel mezo, dovendola fare in qualche altro luogo, tal volta non basterà l'applicarvene quattro volte tanto, né dieci, né cento, né mille. Faremo sopra ciò una tal quale considerazion generale, e poi verremo alla specifica determinazione della proporzione secondo la quale si vanno variando le forze per far la frazzione più in un punto che in un altro.
Segniamo prima questo legno AB, da rompersi nel mezo sopra 'l sostegno C, ed appresso segniamo l'istesso, ma sotto caratteri DE, da rompersi sopra 'l sostegno F, remoto dal mezo. Prima, è manifesto che sendo le distanze AC, CB eguali, la forza sarà compartita egualmente nelle estremità B, A. Secondo, poi che la distanza DF diminuisce dalla distanza AC, il momento della forza posta in D sciema dal momento in A, cioè posto nella distanza CA, e sciema secondo la proporzione della linea DF alla AC, ed in consequenza bisogna crescerlo per pareggiare o superar la resistenza di F: ma la distanza DF si può diminuire in infinito in relazione alla distanza AC: adunque bisogna poter crescere in infinito la forza da applicarsi in D per pareggiar la resistenza in F. Ma all'incontro, secondo che cresce la distanza FE sopra la CB, convien diminuire la forza in E per pareggiare la resistenza in F: ma la distanza FE in relazione alla CB non si può crescere in infinito col ritirar il sostegno F verso il termine D, anzi né anco il doppio: adunque la forza in E per pareggiare la resistenza in F sarà sempre più che la metà della forza in B. Comprendesi dunque la necessità del doversi agumentare i momenti del congiunto delle forze in E, D infinitamente per pareggiare o superar la resistenza posta in F, secondo che il sostegno F s'andrà approssimando verso l'estremità D.
Sagr. Che diremo, Sig. Simplicio? non convien egli confessare, la virtù della geometria esser il più potente strumento d'ogni altro per acuir l'ingegno e disporlo al perfettamente discorrere e specolare? e che con gran ragione voleva Platone i suoi scolari prima ben fondati nelle matematiche? Io benissimo avevo compreso la facultà della leva, e come crescendo o sciemando la sua lunghezza, cresceva o calava il momento della forza e della resistenza; con tutto ciò nella determinazione del presente problema m'ingannavo, e non di poco, ma d'infinito.
Simp. Veramente comincio a comprendere che la logica, benché strumento prestantissimo per regolare il nostro discorso, non arriva, quanto al destar la mente all'invenzione, all'acutezza della geometria.
Sagr. A me pare che la logica insegni a conoscere se i discorsi e le dimostrazioni già fatte e trovate procedano concludentemente; ma che ella insegni a trovare i discorsi e le dimostrazioni concludenti, ciò veramente non credo io. Ma sarà meglio che il Sig. Salviati ci mostri secondo qual proporzione vadian crescendo i momenti delle forze per superar la resistenza del medesimo legno secondo i luoghi diversi della rottura.
Salv. La proporzione, che ricercate, procede in cotal forma, che:
Se nella lunghezza d'un cilindro si noteranno due luoghi sopra i quali si voglia far la frazzione di esso cilindro, le resistenze di detti due luoghi hanno fra di loro la medesima proporzione che i rettangoli fatti dalle distanze di essi luoghi contrariamente presi.
Siano le forze A, B minime per rompere in C, e le E, F parimente le minime per rompere in D: dico, le forze A, B alle forze E, F aver la proporzion medesima che ha il rettangolo ADB al rettangolo ACB. Imperò che le forze A, B alle forze E, F hanno la proporzion composta delle forze A, B alla forza B, della B alla F, e della F alle F, E: ma come le forze A, B alla forza B, così sta la lunghezza BA ad AC; e come la forza B alla F, così sta la linea DB alla BC; e come la forza F alle F, E, così sta la linea DA alla AB: adunque le forze A, B alle forze E, F hanno la proporzion composta delle tre, cioè della retta BA ad AC, della DB a BC, e della DA ad AB. Ma delle due DA ad AB, ed AB ad AC, si compone la proporzione della DA ad AC; adunque le forze A, B alle forze E, F hanno la proporzion composta di questa DA ad AC e dell'altra DB a BC. Ma il rettangolo ADB al rettangolo ACB ha la proporzion composta delle medesime DA ad AC e DB a BC: adunque le forze A, B alle E, F stanno come il rettangolo ADB al rettangolo ACB: che è quanto a dire, la resistenza in C ad essere spezzato alla resistenza ad esser rotto in D aver la medesima proporzione che il rettangolo ADB al rettandolo ACB: che è quello che si doveva provare.
In consequenza di questo teorema possiamo risolvere un problema assai curioso; ed è:
Dato il peso massimo retto dal mezo di un cilindro o prisma, dove la resistenza è minima, e dato un peso maggior di quello, trovare nel detto cilindro il punto nel quale il dato peso maggiore sia retto come peso massimo.
Abbia il dato peso, maggiore del peso massimo retto dal mezo del cilindro AB, ad esso massimo la proporzione della linea E alla F: bisogna trovare il punto nel cilindro dal quale il dato peso venga sostenuto come massimo. Tra le due E, F sia media proporzionale la G, e come la E alla G, così si faccia la AD alla S: sarà la S minore della AD. Sia AD diametro del mezo cerchio AHD, nel quale pongasi la AH eguale alla S, e congiungasi HD, e ad essa si tagli eguale la DR: dico, il punto R essere il cercato, dal quale il dato peso, maggiore del massimo retto dal mezo del cilindro D, verrebbe come massimo retto. Sopra la lunghezza BA facciasi il mezo cerchio ANB, e si alzi la perpendicolare RN, e congiungasi ND: e perché i due quadrati NR, RD sono eguali al quadrato ND, cioè al quadrato AD, cioè alli due AH, HD, e l'HD è eguale al quadrato DR, adunque il quadrato NR, cioè il rettangolo ARB, sarà eguale al quadrato AH, cioè al quadrato S; ma il quadrato S al quadrato AD è come la F alla E, cioè come il peso massimo retto in D al dato peso maggiore; adunque questo maggiore sarà retto in R come il massimo che vi possa esser sostenuto: che è quello che si cercava.
Sagr. Intendo benissimo: e vo considerando che, essendo il prisma AB sempre più gagliardo e resistente alla pressione nelle parti che più e più si allontanano dal mezo, nelle travi grandissime e gravi se ne potrebbe levar non piccola parte verso l'estremità, con notabile alleggerimento di peso, che ne i travamenti di grandi stanze sarebbe di commodo ed utile non piccolo. E bella cosa sarebbe il ritrovar quale figura devrebbe aver quel tal solido che in tutte le sue parti fusse egualmente resistente, tal che non più facile fusse ad esser rotto da un peso che lo premesse nel mezo, che in qualsivoglia altro luogo.
Salv. Già ero in procinto di dirvi cosa assai notabile e vaga in questo proposito. Fo un poco di figura per meglio dichiararmi.
Questo DB è un prisma, la cui resistenza ad essere spezzato nell'estremità AD da una forza premente nel termine B è tanto minore della resistenza che si troverebbe nel luogo CI, quanto la lunghezza CB è minore della BA, come già si è dimostrato. Intendasi adesso il medesimo prisma segato diagonalmente secondo la linea FB, sì che le faccie opposte siano due triangoli, uno de i quali, verso noi, è questo FAB: ottiene tal solido contraria natura del prisma, cioè che meno resiste all'essere spezzato sopra 'l termine C che sopra l'A dalla forza posta in B, quanto la lunghezza CB è minore della BA. Il che facilmente proveremo: perché intendendo il taglio CNO parallelo all'altro AFD, la linea FA alla CN nel triangolo FAB arà la medesima proporzione che la linea AB alla BC; e però se noi intenderemo, ne i punti A, C esser i sostegni di due leve, le cui distanze BA, AF, BC, CN, queste saranno simili; e però quel momento che ha la forza posta in B con la distanza BA sopra la resistenza posta nella distanza AF, l'arà la medesima forza in B con la distanza BC sopra la medesima resistenza che fusse posta nella distanza CN: ma la resistenza da superarsi nel sostegno C, posta nella distanza CN, dalla forza in B, è minore della resistenza in A tanto, quanto il rettangolo CO è minore del rettangolo AD, cioè quanto la linea CN è minore della AF, cioè la CB della BA: adunque la resistenza della parte OCB ad esser rotto in C è tanto minore della resistenza dell'intero DAB ad esser rotto in A, quanto la lunghezza CB è minore della AB. Aviamo dunque nel trave o prisma DB levatone una parte, cioè la metà, segandolo diagonalmente, e lasciato il cuneo o prisma triangolare FBA; e sono due solidi di condizioni contrarie, cioè quello tanto più resiste quanto più si scorcia, e questo nello scorciarsi perde altrettanto di robustezza. Ora, stante questo, par ben ragionevole, anzi pur necessario, che se gli possa dare un taglio, per il quale, togliendo via il superfluo, rimanga un solido di figura tale, che in tutte le sue parti sia egualmente resistente.
Simp. È ben necessario che dove si passa dal maggiore al minore, s'incontri ancora l'eguale.
Sagr. Ma il punto sta ora a trovar come si ha guidar la sega per far questo taglio.
Simp. Questo mi si rappresenta che dovrebbe esser opera assai facile; perché, se col segar il prisma diagonalmente, levandone la metà, la figura che resta ritien contraria natura a quella del prisma intero, sì che in tutti i luoghi ne i quali questo acquistava robustezza, quello altrettanto la perdeva, parmi che tenendo la via del mezo, cioè levando solamente la metà di quella metà, che è la quarta parte del tutto, la rimanente figura non guadagnerà né perderà robustezza in tutti quei medesimi luoghi ne i quali la perdita e il guadagno dell'altre due figure erano sempre eguali.
Salv. Voi, Sig. Simplicio, non avete dato nel segno: e sì come io vi mostrerò, vedrete veramente che quello che si può segar del prisma e levar via senza indebolirlo, non è la sua quarta parte, ma la terza. Ora resta (che è quello che accennava il Sig. Sagredo) il ritrovar secondo che linea si deve far camminar la sega: la quale proverò che deve esser linea parabolica. Ma prima è necessario dimostrare certo lemma, che è tale:
Se saranno due libre o leve, divise da i loro sostegni in modo, che le due distanze dove si hanno a costituire le potenze, abbiano tra di loro doppia proporzione delle distanze dove saranno le resistenze, le quali resistenze siano tra loro come le lor distanze, le potenze sostenenti saranno eguali.
Siano due leve AB, CD, divise sopra i lor sostegni E, F talmente, che la distanza EB alla FD abbia doppia proporzione di quella che ha la distanza EA alla FC; ed intendansi in A, C resistenze tra di loro nella proporzione di EA, FC: dico, le potenze che in B, D sosterranno le resistenze di A, C esser tra loro eguali. Pongasi la EG media proporzionale tra EB e FD: sarà dunque come BE ed EG, così GE ad FD ed AE a CF; e così si è posto esser la resistenza di A alla resistenza di C. E perché come EG ad FD, così AE a CF, sarà, permutando, come GE ad EA così DF ad FC; e però (per esser le due leve DC, GA divise proporzionalmente ne i punti F, E) quando la potenza che posta in D pareggia la resistenza di C, fusse in G, pareggerebbe la medesima resistenza di C posta in A: ma, per il dato, la resistenza di C ha la medesima proporzione che la AE alla CF, cioè che la BE alla EG: adunque la potenza G, o vogliam dire D, posta in B, sosterrà la resistenza posta in A: che è quello che si doveva provare.
Inteso questo, nella faccia FB del prisma DB sia segnata la linea parabolica FNB, il cui vertice B, secondo la quale sia segato esso prisma, restando il solido compreso dalla base AD, dal piano rettangolo AG, dalla linea retta BG e dalla superficie DGBF, incurvata secondo la curvità della linea parabolica FNB: dico, tal solido esser per tutto egualmente resistente. Sia segato dal piano CO, parallelo all'AD, e intendansi due leve divise e posate sopra i sostegni A, C, e siano dell'una le distanze BA, AF, e dell'altra le BC, CN. E perché nella parabola FBA la AB alla BC sta come il quadrato della FA al quadrato di CN, è manifesto, la distanza BA dell'una leva alla distanza BC dell'altra aver doppia proporzione di quella che ha l'altra distanza AF all'altra CN: e perché la resistenza da pareggiarsi con la leva BA alla resistenza da pareggiarsi con la leva BC ha la medesima proporzione che 'l rettangolo DA al rettangolo OC, la quale è la medesima che ha la linea AF alla NC, che sono l'altre due distanze delle leve, è manifesto, per il lemma passato, che la medesima forza che sendo applicata alla linea BG pareggerà la resistenza DA, pareggerà ancora la resistenza CO. Ed il medesimo si dimostrerà segandosi il solido in qual si sia altro luogo: adunque tal solido parabolico è per tutto egualmente resistente. Che poi, segandosi il prisma secondo la linea parabolica FNB, se ne levi la terza parte, si fa manifesto: perché la semiparabola FNBA e 'l rettangolo FB son basi di due solidi compresi tra due piani paralleli, cioè tra i rettangoli FB, DG, per lo che ritengono tra di loro la medesima proporzione che esse lor basi; ma il rettangolo FB è sesquialtero della semiparabola FNBA; adunque, segando il prisma secondo la linea parabolica, se ne leva la terza parte. Di qui si vede come con diminuzion di peso di più di trentatré per cento si posson far i travamenti, senza diminuir punto la loro gagliardia; il che ne i navilii grandi, in particolare per regger le coverte, può esser d'utile non piccolo, atteso che in cotali fabbriche la leggerezza importa infinitamente.
Sagr. Le utilità son tante, che lungo o impossibil sarebbe il registrarle tutte: ma io, lasciate queste da banda, arei più gusto d'intender che l'alleggerimento si faccia secondo le proporzioni assegnate. Che il taglio secondo la diagonale levi la metà del peso, l'intendo benissimo; ma che l'altro, secondo la parabolica, porti via la terza parte del prisma, posso crederlo al Sig. Salviati, sempre veridico, ma in ciò più della fede mi sarebbe grata la scienza.
Salv. Vorreste dunque aver la dimostrazione, come sia vero che l'eccesso del prisma sopra questo che per ora chiamiamo solido parabolico, sia la terza parte di tutto il prisma. So d'averlo altra volta dimostrato; tenterò ora se potrò rimetter insieme la dimostrazione, per la quale intanto mi sovvien che mi servivo di certo lemma d'Archimede, posto da esso nel libro delle Spirali: ed è, che se quante linee si vogliono si eccederanno egualmente, e l'eccesso sia eguale alla minima di quelle, ed altrettante siano ciascheduna eguale alla massima, i quadrati di tutte queste saranno meno che tripli de i quadrati di quelle che si eccedono; ma i medesimi saranno ben più che tripli di quelli altri che restano, trattone il quadrato della massima.
Posto questo, sia in questo rettangolo ACBP inscritta la linea parabolica AB: doviamo provare, il triangolo misto BAP, i cui lati sono BP, PA e base la linea parabolica BA, esser la terza parte di tutto 'l rettangolo CP. Imperò che, se non è tale, sarà o più che la terza parte o meno. Sia, se esser può, meno, ed a quello che gli manca intendasi esser eguale lo spazio X. Dividendo poi il rettangolo CP continuamente in parti eguali con linee parallele a i lati BP, CA arriveremo finalmente a parti tali, ch'una di loro sarà minore dello spazio X: or sia una di quelle il rettangolo OB, e per i punti dove l'altre parallele segano la linea parabolica, facciansi passare le parallele alla AP; e qui intenderò circoscritta intorno al nostro triangolo misto una figura composta di rettangoli, che sono BO, IN, HM, FL, EK, GA, la qual figura sarà pur ancora meno che la terza parte del rettangolo CP, essendo che l'eccesso di essa figura sopra 'l triangolo misto è manco assai del rettangolo BO, il quale è ancor minore dello spazio X.
Sagr. Piano, di grazia, ch'io non vedo come l'eccesso di questa figura circoscritta sopra 'l triangolo misto sia manco assai del rettangolo BO.
Salv. Il rettangolo BO non è egli eguale a tutti questi rettangoletti per i quali passa la nostra linea parabolica? dico di questi BI, IH, HF, FE, EG, GA, de i quali una parte sola resta fuori del triangolo misto? ed il rettangolo BO non si è egli posto ancor minore nello spazio X? Adunque, se il triangolo insieme con l'X pareggiava, per l'avversario, la terza parte del rettangolo CP, la figura circoscritta, che al triangolo aggiugne tanto meno che lo spazio X, resterà pur ancora minore della terza parte del rettangolo medesimo CP: ma questo non può essere, perché ella è più della terza parte: adunque non è vero che il nostro triangolo misto sia manco del terzo del rettangolo.
Sagr. Ho intesa la soluzione del mio dubbio. Ma bisogna ora provarci che la figura circoscritta sia più della terza parte del rettangolo CP, dove credo che aremo assai più da fare.
Salv. Eh non ci è gran difficoltà. Imperò che nella parabola il quadrato della linea DE al quadrato della ZG ha la medesima proporzione che la linea DA alla AZ, che è quella che ha il rettangolo KE al rettangolo AG (per esser l'altezze AK, KL eguali); adunque la proporzione che ha il quadrato ED al quadrato ZG, cioè il quadrato LA al quadrato AK, l'ha ancora il rettangolo KE al rettangolo KZ. E nel medesimo modo appunto si proverà de gli altri rettangoli LF, MH, NI, OB star tra di loro come i quadrati delle linee MA, NA, OA, PA. Consideriamo adesso come la figura circoscritta è composta di alcuni spazii che tra di loro stanno come i quadrati di linee che si eccedono con eccessi eguali alla minima, e come il rettangolo CP è composto di altrettanti spazii ciascuno eguale al massimo, che sono tutti i rettangoli eguali all'OB; adunque, per il lemma d'Archimede, la figura circoscritta è più della terza parte del rettangolo CP: ma era anche minore, il che è impossibile: adunque il triangolo misto non è manco del terzo del rettangolo CP. Dico parimente che non è più. Imperò che, se è più del terzo del rettangolo CP, intendasi lo spazio X eguale all'eccesso del triangolo sopra la terza parte di esso rettangolo CP; e fatta la divisione e suddivisione del rettangolo in rettangoli sempre eguali, si arriverà a tale che uno di quelli sia minore dello spazio X. Sia fatta, e sia il rettangolo BO minore dell'X; e descritta come sopra la figura, avremo nel triangolo misto inscritta una figura composta de i rettangoli VO, TN, SM, RL, QK, la quale non sarà ancora minore della terza parte del gran rettangolo CP. Imperò che il triangolo misto supera di manco assai la figura inscritta di quello che egli superi la terza parte di esso rettangolo CP, atteso che l'eccesso del triangolo sopra la terza parte del rettangolo CP è eguale allo spazio X, il quale è minore del rettangolo BO, e questo è anco minore assai dell'eccesso del triangolo sopra la figura inscrittagli; imperò che ad esso rettangolo BO sono eguali tutti i rettangoletti AG, GE, EF, FH, HI, IB, de i quali son ancora manco che la metà gli avanzi del triangolo sopra la figura inscritta. E però, avanzando il triangolo la terza parte del rettangolo CP di più assai (avanzandolo dello spazio X) che ei non avanza la sua figura inscritta, sarà tal figura ancora maggiore della terza parte del rettangolo CP: ma ella è minore, per il lemma supposto; imperò che il rettangolo CP, come aggregato di tutti i rettangoli massimi, a i rettangoli componenti la figura inscritta ha la medesima proporzione che l'aggregato di tutti i quadrati delle linee eguali alla massima a i quadrati delle linee che si eccedono egualmente, trattone il quadrato della massima; e però (come de i quadrati accade) tutto l'aggregato de i massimi (che è il rettangolo CP) è più che triplo dell'aggregato de gli eccedentisi, trattone il massimo, che compongono la figura inscritta. Adunque il triangolo misto non è né maggiore né minore della terza parte del rettangolo CP; è dunque eguale.
Sagr. Bella e ingegnosa dimostrazione, e tanto più, quanto ella ci dà la quadratura della parabola, mostrandola essere sesquiterza del triangolo inscrittogli, provando quello che Archimede con due tra di loro diversissimi, ma amendue ammirabili, progressi di molte proposizioni dimostrò; come anco fu dimostrata ultimamente da Luca Valerio, altro Archimede secondo dell'età nostra, la qual dimostrazione è registrata nel libro che egli scrisse del centro della gravità de i solidi.
Salv. Libro veramente da non esser posposto a qual si sia scritto da i più famosi geometri del presente e di tutti i secoli passati; il quale quando fu veduto dall'Accademico nostro, lo fece desistere dal proseguire i suoi trovati, che egli andava continuando di scrivere sopra 'l medesimo suggetto, già che vedde il tutto tanto felicemente ritrovato e dimostrato dal detto Sig. Valerio.
Sagr. Io ero informato di tutto questo accidente dall'istesso Accademico: e l'avevo anco ricercato che mi lasciasse una volta vedere le sue dimostrazioni sin allora ritrovate quando ei s'incontrò nel libro del Sig. Valerio, ma non mi successe poi il vederle.
Salv. Io ne ho copia, e le mostrerò a V. S., che averà gusto di vedere la diversità de i metodi con i quali camminano questi due autori per l'investigazione delle medesime conclusioni e loro dimostrazioni; dove anco alcune delle conclusioni hanno differente esplicazione, benché in effetto egualmente vere.
Sagr. Mi sarà molto caro il vederle, e V. S., quando ritorni a i soliti congressi, mi farà grazia di portarle seco. Ma intanto, essendo questa, della resistenza del solido cavato dal prisma col taglio parabolico, operazione non men bella che utile in molte opere mecaniche, buona cosa sarebbe per gli artefici l'aver qualche regola facile e spedita per potere sopra 'l piano del prisma segnare essa linea parabolica.
Salv. Modi di disegnar tali linee ce ne son molti, ma due sopra tutti gli altri speditissimi glie ne dirò io: uno de i quali è veramente maraviglioso, poiché con esso, in manco tempo che col compasso altri disegnerà sottilmente sopra una carta quattro o sei cerchi di differenti grandezze, io posso disegnare trenta e quaranta linee paraboliche, non men giuste sottili e pulite delle circonferenze di essi cerchi. Io ho una palla di bronzo esquisitamente rotonda, non più grande d'una noce; questa, tirata sopra uno specchio di metallo, tenuto non eretto all'orizonte, ma alquanto inchinato, sì che la palla nel moto vi possa camminar sopra, calcandolo leggiermente nel muoversi, lascia una linea parabolica sottilissimamente e pulitissimamente descritta, e più larga e più stretta secondo che la proiezzione si sarà più o meno elevata. Dove anco abbiamo chiara e sensata esperienza, il moto de i proietti farsi per linee paraboliche: effetto non osservato prima che dal nostro amico, il quale ne arreca anco la dimostrazione nel suo libro del moto, che vedremo insieme nel primo congresso. La palla poi, per descrivere al modo detto le parabole, bisogna, con maneggiarla alquanto con la mano, scaldarla ed alquanto inumidirla, ché così lascerà più apparenti sopra lo specchio i suoi vestigii. L'altro modo, per disegnar la linea, che cerchiamo, sopra il prisma, procede così. Ferminsi ad alto due chiodi in un parete, equidistanti all'orizonte e tra di loro lontani il doppio della larghezza del rettangolo su 'l quale vogliamo notare la semiparabola, e da questi due chiodi penda una catenella sottile, e tanto lunga che la sua sacca si stenda quanta è la lunghezza del prisma: questa catenella si piega in figura parabolica, sì che andando punteggiando sopra 'l muro la strada che vi fa essa catenella, aremo descritta un'intera parabola, la quale con un perpendicolo, che penda dal mezo di quei due chiodi, si dividerà in parti eguali. Il trasferir poi tal linea sopra le faccie opposte del prisma non ha difficoltà nessuna, sì che ogni mediocre artefice lo saprà fare. Potrebbesi anco con l'aiuto delle linee geometriche segnate su 'l compasso del nostro amico, senz'altra fattura, andar su l'istessa faccia del prisma punteggiando la linea medesima.
Abbiamo sin qui dimostrate tante conclusioni attenenti alla contemplazione di queste resistenze de i solidi all'essere spezzati, con l'aver prima aperto l'ingresso a tale scienza col suppor come nota la resistenza per diritto, che si potrà consequentemente camminar avanti, ritrovandone altre ed altre conclusioni, e loro dimostrazioni, di quelle che in natura sono infinite. Solo per ora, per ultimo termine de gli odierni ragionamenti, voglio aggiugnere la specolazione delle resistenze de i solidi vacui, de i quali l'arte, e più la natura, si serve in mille operazioni, dove senza crescer peso si cresce grandemente la robustezza, come si vede nell'ossa de gli uccelli ed in moltissime canne, che son leggiere e molto resistenti al piegarsi e rompersi: che se un fil di paglia, che sostien una spiga più grave di tutto 'l gambo, fusse fatto della medesima quantità di materia, ma fusse massiccio, sarebbe assai meno resistente al piegarsi ed al rompersi. E con tal ragione ha osservato l'arte, e confermato l'esperienza, che un'asta vota o una canna di legno o di metallo è molto più salda che se fusse, d'altrettanto peso e della medesima lunghezza, massiccia, che in consequenza sarebbe più sottile; e però l'arte ha trovato di far vote dentro le lancie, quando si desideri averle gagliarde e leggiere. Mostreremo per tanto, come:
Le resistenze di due cilindri eguali ed egualmente lunghi, l'uno de i quali sia voto e l'altro massiccio, hanno tra di loro la medesima proporzione che i lor diametri.
Siano, la canna o cilindro voto AE, ed il cilindro IN massiccio, eguali in peso ed egualmente lunghi: dico, la resistenza della canna AE all'esser rotta alla resistenza del cilindro solido IN aver la medesima proporzione che 'l diametro AB al diametro IL. Il che è assai manifesto: perché, essendo la canna e 'l cilindro IN eguali ed egualmente lunghi, il cerchio IL, base del cilindro, sarà eguale alla ciambella AB, base della canna AE (chiamo ciambella la superficie che resta, tratto un cerchio minore dal suo concentrico maggiore), e però le loro resistenze assolute saranno eguali: ma perché nel romper in traverso ci serviamo, nel cilindro IN, della lunghezza LN per leva, e per sostegno del punto L, e del semidiametro o diametro LI per contralleva, e nella canna la parte della leva, cioè la linea BE, è eguale alla LN, ma la contralleva oltre al sostegno B è il semidiametro o diametro AB, resta manifesto, la resistenza della canna superar quella del cilindro solido secondo l'eccesso del diametro AB sopra 'l diametro IL: che è quello che cercavamo. S'acquista, dunque, di robustezza nella canna vota sopra la robustezza del cilindro solido secondo la proporzione de i diametri, tutta volta però che amendue siano dell'istessa materia, peso e lunghezza. Sarà bene che conseguentemente andiamo investigando quello che accaggia negli altri casi indifferentemente tra tutte le canne e cilindri solidi egualmente lunghi, benché in quantità di peso diseguali e più e meno evacuati. E prima dimostreremo, come:
Data una canna vota, si possa trovare un cilindro pieno, eguale ad essa.
Facilissima è tal operazione. Imperò che sia la linea AB diametro della canna, e CD diametro del voto: applichisi nel cerchio maggiore la linea AE egual al diametro CD, e congiungasi la EB. E perché nel mezo cerchio AEB l'angolo E è retto, il cerchio il cui diametro è AB, sarà eguale alli due cerchi de i diametri AE, EB; ma AE è il diametro del voto della canna; adunque il cerchio il cui diametro sia EB, sarà egual alla ciambella ACBD: e però il cilindro solido, il cerchio della cui base abbia il diametro EB, sarà eguale alla canna, essendo egualmente lungo. Dimostrato questo, potremo speditamente
Trovare qual proporzione abbiano le resistenze d'una canna e di un cilindro, qualunque siano, pur che egualmente lunghi.
Sia la canna ABE, ed il cilindro RSM egualmente lungo: bisogna trovare qual proporzione abbiano tra di loro le lor resistenze. Trovisi, per la precedente, il cilindro ILN eguale alla canna ed egualmente lungo, e delle linee IL, RS (diametri delle basi de i cilindri IN, RM) sia quarta proporzionale la linea V: dico, la resistenza della canna AE a quella del cilindro RM esser come la linea AB alla V. Imperò che, essendo la canna AE eguale ed egualmente lunga al cilindro IN, la resistenza della canna alla resistenza del cilindro starà come la linea AB alla IL: ma la resistenza del cilindro IN alla resistenza del cilindro RM sta come il cubo IL al cubo RS, cioè come la linea IL alla V; adunque, ex æquali, la resistenza della canna AE alla resistenza del cilindro RM ha la medesima proporzione che la linea AB alla V: che è quello che si cercava.
Finisce la seconda Giornata